
TYMSHARE TYMCOM-X MANUALS
REFERENCE SERIES

ADDENDUM TO

FORTRAN IV

FEBRUARY 1973

TYMSHARE, INC.

CUPERTINO, CALIFORNIA 95014

TYMSHARE
^3, TYMSHARE, INC., Litho in U.S.A.

CONTENTS

Page

SECTION 1 - INTRODUCTION 1

SECTION 2 - INPUT AND OUTPUT 3

FORTRAN File Handling 3

File Descriptions 3

The OPEN Statement 4

The CLOSE Statement 6

The READ and WRITE Statements 6

The POSITION Statement 10

The POSITION and SIZE Functions 10

Simulated Terminal Output 11

Binary File Conversion 11

Sample Problem 12

M Format Specification 13

Output 14

Input 14

Output Errors 16

SECTION 3 - PROGRAM SEGMENTATION 17

Program Components 17

Program Structure 18

The Overlay Structure 19

Overlay Files 21

The Link Structure 23

Calling Sequence 24

Overlay Calls 24

Link Calls 25

Resident Segments 26

Data Retention 27

Library Loading 28

Sample Problem 28

SECTION 4 - CFORTRAN COMMANDS 33

Sample Problem 33

Program Listings 35

Line Numbers and Addresses 36

11

Page

Entering Statements From the Terminal 38

Transferring Programs and Statements 41

Transferring Information From a File 41

Transferring Information To a File 43

The COPY and MOVE Commands 44

Program Editing 47

Modifying Statements 47

Deleting Statements 48

Renumbering Statements 49

Compilation and Execution 51

The COMPILE Command 52

The RUN Command 54

Setting Switches 55

SECTION 5 - FORTRAN IV LIBRARY 57

Arguments 58

Modified Subroutines 60

Multiple Entry Point Program Transfers 60

The BENCHM Subroutine 63

The AFILE Subroutine 63

The BFILE Subroutine 64

The DYNARY Subroutine 64

The NAMPPN Subroutine 65

The ONECHR Subroutine 66

The RENAME Subroutine 66

The TIMER Subroutine 67

Direct Access File Subroutines 67

Arguments 68

The DOPENB Subroutine 68

The DREAD Subroutine 70

The DWRITE Subroutine 70

The DDEL Subroutine 70

The DOLOSE Subroutine 71

The DGROW Subroutine 71

The DSKERR Subroutine 71

^

111

Page

CalComp Plotter Subroutines 74

The AXIS Subroutine 75

The LINE Subroutine 75

The NUMBER Subroutine 75

The PLOT Subroutine 76

The PLOTF Subroutine 76

The PLOTS Subroutine 76

The SCALE Subroutine 77

The SYMBOL Subroutine 77

The WHERE Subroutine 77

SECTION 6 - BINARY LIBRARY PROGRAM 79

Creating or Updating a Library 79

Listing a Library 80

Example Using CARMEL 81

APPENDIX - SCIENTIFIC SUBROUTINE PACKAGE 83

Statistical Routines 83

Matrix Subroutines 85

Mathematical Subroutines 88

SECTION 1

INTRODUCTION

The TYMCOM-X FORTRAN is constantly being improved through new
features and expanded capability. This document describes the Tymshare
FORTRAN modifications and is intended as a supplement to the FORTRAN
capability described in the Tymshare TYMCOM-X FORTRAN IV Reference
Manual .

The major improvements presented in this supplement are Tym-
share' s file handling capability, program segmentation, and the FORTRAN
program development package, CFORTRAN. The file handling capability

is described in Section 2, along with other new input/output features.

Segmentation is the subject of Section 3, and CFORTRAN is the subject of

Section 4

.

Section 5 describes the new and modified library subroutines which
are available for use in FORTRAN programs . In conjunction with the

program transfer capability of the RUN subroutine, the /ENTRY statement

permits multiple entry point specification in the called program.

The final section. Section 6, discusses the binary library program,
CARMEL, which permits both the creation and the niodification of

subprogram libraries

.

The Appendix is a list of the subroutines in the Scientific Subroutine

Package mentioned on page 57.

In all examples in this document, everything typed by the user is

underlined. The symbol used to indicate a user-typed Carriage Return
is z>-

Control characters are denoted by a superscript c. For example,
A'^ denotes Control A . The method for typing a control character depends

on the type of terminal used. Consult the literature for your particular

terminal or see your Tymshare representative.

Lowercase letters used in examples of command forms represent

the input to be typed. In the command

>SAVE file name -;-,

the characters file name indicate that the user should type a file name in

that position.

Brackets indicate an option; they are not part of the statement or

command . For example ,

>LIST [TO file name] -^

indicates that the user may optionally specify an output file.

SECTION 2

INPUT AND OUTPUT

The major improvement in FORTRAN input and output procedures is

the Tymshare file handling capability, which permits all file processing to

be accomplished with simple, definitive statements. Also described in this

section is the M format specification for inserting and reading commas and

decimal points embedded in a number. The last item discussed is asterisk

output to indicate that a number is too large for the specified FORMAT
field.

FORTRAN FILE HANDLING

The FORTRAN file handling capability is designed for maximum effi-

ciency and flexibility, while maintaining the traditionally simple syntax of

Tymshare's software. TYMCOM-X FORTRAN allows as many as 15 files

to be open simultaneously. FORTRAN files may contain symbolic or binary

code, and the user may select sequential or random processing.

To provide the user with improved price performance, the TYMCOM-X
FORTRAN system for file handling incorporates major improvements in

information storage allocation methods . All file information is packed to

utilize fully the storage devices. Most existing FORTRAN files are com-
patible with the file handling methods described below. A simple program
for converting incompatible binary files is described on page 11 .

File Descriptions

A variety of terms describes files, each term referring to a particular

aspect of the file. The terms symbolic and binary refer to the code in which

the data in the file is written; sequential and randona refer to the modes of

accessing the file information.

A symbolic file contains alphanumeric characters and can be printed

in TYMEX or read and displayed in EDITOR or CFORTRAN;! symbolic file

input and output must be formatted. A binary file contains binary code and

generally requires less storage space than a symbolic file; a binary file

cannot be listed in TYMEX or CFORTRAN or read into EDITOR; all binary

file input and output must be unformatted. A symbolic file information unit

may be a character or a record. A binary file information unit is a 36-bit

word or a record. One line of a symbolic file is a series of characters

terminated by a Carriage Return and a Line Feed. A record is a user-
defined unit of information containing a specified number of characters for

a symbolic file or a specified number of words for a binary file.

1 - CFORTRAN is discussed on page 33.

The terms sequential and random refer to the manner in which the

file information is accessed. Sequential file information is read or written

in the sequence in which the data is stored on the file. A random mode
permits any unit of information to be accessed without processing any other

part of the file. Generally, sequential files require less program overhead
than random files , but may be considerably slower for input and output of

only selected information.

Some of the file handling statements permit the user to specify a file

position, thereby selecting the information to be processed in a random
mode. A file position is described in characters, words, or records, and
refers to the next information unit to be processed. Position 1 refers to

the first information unit on the file. A position has meaning only for ran-
dom files; sequential file information is always processed sequentially. A
file may be written sequentially and read randomly, or written randomly
and read sequentially.

The OPEN Statement

Before any activity occurs on a file within a FORTRAN program, the

file is opened with the OPEN statement. The OPEN statement activates the

file, and the statement arguments provide all the necessary information to

describe the file. The form of the OPEN statement is

OPEN(file number, 'file name' ,mode(n), data type, ERR = label)

where the arguments are as defined below.

file number An integer constant or variable corresponding to the number
of the file being opened. This number is used to identify the

file in subsequent file handling statements . If the terminal
is used for input and output, 14 files may be open simulta-
neously; if the terminal is not used for any input or output,

15 files may be open simultaneously. Permissible file num-
bers are 1 through 29; each open file must have a unique file

number

.

'file name' The name of the file being opened; the file name must start

with a letter from A to Z and may include letters and the

digits through 9 . This argument may be the actual file

name enclosed in single quote marks or the name of a var-
iable, array, or array element. The file name may include
a preceding user name enclosed in parentheses and a six-

character file name plus a period (.) and a three-character
file name extension. The user must specify any applicable
file name extension, as none is assumed in file handling;

blanks or extra characters in a file name are ignored. In

addition, the file name may be preceded by a device name
and a colon (:); the file name is then optional. For example.

OPEN(18,'TTY:', OUTPUT)

opens the terminal as unit 18 for symbolic output,

device is named, FORTRAN assumes DSK

.

When no

mode(n) The access mode defining a READ or WRITE operation and

sequential or random processing. For random access files,

the user may define a record length by specifying the n

enclosed in parentheses. The record length is an integer

constant equal to the number of characters per record for

a symbolic file or the number of words for a binary file.

The character count for a symbolic record must include the

two terminating characters: a Carriage Return and a Line

Feed. The user may omit the access mode entirely, and

the system assumes the INPUT mode. The five access
modes are defined as follows:

INPUT Sequential input — read from file.

OUTPUT Sequential output — write on file . If an existing

file is opened in the OUTPUT mode, the previ-

ous contents are erased and the new information

written when the file is closed. Sequential files

are not written if the user interrupts program
execution.

RANDIN. Random input — read information from selected

positions on the file.

RANDOUT Random output — write information at selected

positions on the file.

RANDIO Random input and output — read or write at

specified positions of the file .

data type Specifies the file code and may be either SYMBOLIC or

BINARY. If the data type is omitted, the system assumes
SYMBOLIC.

ERR=label Specifies the label of the statement to which control is

transferred if an error occurs in the opening operation.

This argument is optional and, if included, functions as a

FORTRAN GO TO statement; if it is omitted, an error
causes the system to print an error message and terminate
program execution.

Examples

OPEN(4,'ABC.DAT')

Opens file ABC . DAT as file number 4 . FORTRAN assumes that

the file is symbolic and that the access mode is sequential input.

OPEK(7 , 'FILEA' , RANDIO(5) , BINARY , ERR=20)

Opens FILEA as file number 7 for random input and output of

records containing five words each. FILEA is a binary file, and

the user wants to transfer control to statement number 20 if an

error occurs in the opening process .

If the user omits the OPEN statement, a subsequent READ or WRITE
statem.ent implies the file name FORn.DAT, where n is a two-digit file

number. If the READ or WRITE statement does not contain a FORMAT
statement reference, FORTRAN assumes that FORn.DAT is a binary file.

Also, unless explicitly opened with an OPEN statement, file number 5 is

interpreted as the terminal.

The CLOSE Statement

Each file used in a FORTRAN program may be closed with the CLOSE
statement. The form of the CLOSE statement is

CLOSE(file number)

where the file number is specified in the same manner as described for the

OPEN statement. For example,

CLOSE(15)

closes file number 15.

If a file has not been closed with a CLOSE statement, it is automati-
cally closed at the end of program execution. If the user interrupts a

running program, any file open for input is automatically closed; if a file

is open for sequential output, nothing is written on the file.

The READ and WRITE Statements

The READ statement permits information to be read from a file and
values to be assigned to variables within the FORTRAN program. The
form of the READ statement is:

READ(file number#position, format label, ERR=label, END=label)input list

The WRITE statement permits information in a FORTRAN program
to be written on a file. The form of the WRITE statement is:

WRITE(file number#position, format label, ERR=label)output list

The arguments in the READ and WRITE statements are identical

in form and function, except that READ includes the additional argument
END. The optional END argument specifies the label of the statement to

which control transfers when an end of file is encountered during input

.

If the user omits this argument and the system encounters an end of file,

FORTRAN prints an error message and terminates program execution.

The file number argument and the ERR argument are defined for the OPEN
statement on page 4. The other arguments are described below.

position An expression truncated to an integer value specifying

the file position associated with the next random input

or output operation. As discussed on page 4, this

argument is significant only for random files; if it

is specified for sequential file input and output, it

produces an error.

format label The label of the FORMAT statement, or the name of an

array containing the format, to be used for the input or

output operation. This argument is required for sym-
bolic input and output, but is not valid for binary files

since all binary input and output must be unformatted.

input/output list Standard FORTRAN input/output list of variables or

arrays used in the data transfer.

Examples

READ(4)X,Y,Z,U,V,W

Reads a value for each variable in the input list from file number 4

Because the READ statement contains no FORMAT reference, file

number 4 must be binary.

READ(7#2*J+K , 35 , ERR=50 , END=40)ARRAY

Reads values for ARRAY, starting from position 2*J+K on file

number 7 according to FORMAT statement 35. If an error occurs,

FORTRAN transfers control to statement 50; if FORTRAN encoun-

ters the end of the file, it transfers control to statement 40.

WRITE(6)((ARRAY(I,J),I=1,3)J=1,5)

Writes the array elements indicated on file num.ber 6, starting at

the current file position. This WRITE statement contains no

FORMAT reference; file nunnber 6 must be binary.

WRITE(17#57,20,ERR=50)

Writes according to FORMAT statement 20 at position 57 of file

number 17. Because a position argument appears in a WRITE
statement, file number 17 must be a random file opened for

output or for input and output . A FORMAT reference is legal

for symbolic files only; therefore, file number 17 must be a

symbolic file

.

Symbolic Files

A READ or WRITE statement referring to a symbolic file must con-

tain a FORMAT statement reference and may contain an input/output list.

A line consists of a series of characters terminated by a Carriage
Return and a Line Feed. During input, the end of a FORMAT statement

causes FORTRAN to seek a Carriage Return and a Line Feed as the READ
terminator. For example, the file XYZ contains the lines

1234.56789AAC
7965. 3477. 8RTF
9773.996RMT

where each line is terminated by a Carriage Return and a Line Feed, and

the user's program contains the statements:

LOGICAL L
OPEN (3* 'XYZ;')
READ(3*9)N1*A1*E1#E1

9 F0RMAT<IS*F5.R*F3.1>A3)
RFAD(3*9)NS*AS*Bf>*E2
RFAD(3*10)X#Y*Z#L

10 F0RMAT<I3*4X*I1*A2*L1>

All three lines are read, and the variable values assigned are:

Nl = 12 Al = 34.56 Bl = 78.9 R1 =AAC

N2=79 A2=65.34 B2=77.0 R2=8RT

X=977 Y=6 Z=RM L=T (true)

Note that a READ statement format seeks a Carriage Return and a Line
Feed when the end of the FORMAT statement is encountered, and informa-
tion which has not been read is skipped. If the file being read does not

contain Carriage Returns and Line Feeds, FORTRAN skips all remaining
information, encountering an end of file as the result of the search for a
Carriage Return and a Line Feed.

In a WRITE statement referring to a file for which the user has not

defined a record, a single FORMAT statement causes FORTRAN to write
a Carriage Return and a Line Feed when the end of the FORMAT statement
is encountered. For example, the statements

X=P.345
Y=6.973
ALPHA= 16.491
BETA= 10.393
0PEN<4#'DATA'*0UTPUT)
WRITE(i»#80)X*y*ALFHA*BETA
V7RITF<A,30>X*Y*ALPHA*BETA

PO F0EMATCPF7.3)
30 F0RKAT(?F9.4)

cause FORTRAN to write

2.345 6.973

16.491 10.393
2.3450 6.9730

16.4910 10.3930

on file number 4. Each time the end of a FORMAT statement is reached,

FORTRAN writes a Carriage Return and a Line Feed. The Carriage Re-
turn and Line Feed terminators can be suppressed by including a dollar

sign ($) as the last field specification in the FORMAT statement.

If the user defines a record length for the file being processed, all

symbolic file READ and WRITE statements must include a FORMAT state-

ment label. In READ statements for fixed length random files, a refer-

enced FORMAT statement containing fewer character specifications than

the number of characters defined for the record skips the remaining char-

acters in the record. A FORMAT statement containing more characters

than one record causes FORTRAN to continue reading successive records

until the form.at is satisfied, then scan to the end of the current record.

A WRITE statement FORMAT reference specifying fewer characters than

the defined record length causes FORTRAN to insert a blank for each
missing character. A WRITE statement FORMAT reference specifying

more characters than the defined record length writes as many records

as required, inserts any necessary blanks, and terminates the current

record with a Carriage Return and a Line Feed.

A symbolic file READ statement without an input /output list causes

FORTRAN to read according to the specified format, but the values are

not stored since no variable storage locations are specified.

10

Binary Files

No FORMAT statement may be used for a binary READ or WRITE
operation, because all binary file operations must be unformatted. If nio

input/output list appears in a READ statement for a binary file, the system
skips one record if the record length is defined; if a record length is not

defined, no activity occurs. A binary READ or WRITE operation processes
the number of words required by the input/output list. When a record length

is defined, if the input/output list requires less than one record, FORTRAN
scans to the end of the record; if the input /output list requires more than

one record, FORTRAN reads successive records, then scans to the end of

the current record.

The POSITION Statement

As an alternate method of setting a file position, the user may use the

POSITION statement rather than specify the position argument in the READ
or WRITE statement. The position designated in the POSITION statement

pertains to the next input or output operation. The general statement form
is

POSITION (file number, position)

where the file number is specified in the manner described for the OPEN
statement on page 4, and the position may be an expression evaluated as

an integer. For example,

POSITION(5,32)

sets the current position on file number 5 to 32.

The POSITION and SIZE Functions

FORTRAN includes two integer functions which return information

about open random files. The value of the POSITION function is the current

file position measured in characters, words, or records; the value of the

SIZE function is the total number of characters, words, or records on the

file. The form of the POSITION function is:

POSITION(file number)

The form of the SIZE function is:

SIZE(file number)

11

Example

The user wants to write 15 successive values from the array at every
fifth position on the file, starting from but not including the current position.

The user does not want to write beyond the last position in the file. He uses
both the SIZE function and the POSITION function to write his random file.

DIMENSION SALES<150>
0PEN<l5**PARTNC»*ftAND00T*BINARy>
S*SIZE(15)
DO 10 U«W15
WRlTE(15#<PCSITI0N(l5>+5*EaR«50) SALES<J)
IF<P0SITI0N<15)+5.GE.S) GO TO 30

10 CONTINUE

Simulated Terminal Output

The user may instruct FORTRAN to write data on a file as though the

terminal was being used for output. The statement is:

CALL SIMTTY(file number)

SIMTTY causes the carriage control character to be suppressed during file

output

.

Binary File Conversion

FORTRAN binary files other than those created in the manner
described in this document must be converted. To convert a binary file,

the user calls BINCON from TYMEX and enters the name of the file he

wajits to convert. For example,

- R BINCON -,

FILE TO CONVERT: HISTRY-,
EXIT

converts the file HISTRY to a new binary file form. This program should

be used only once for each file

.

12

Sample Problem

The user has a file containing employee number, pay rate, and hours

worked. His program reads the data from this file, permits him to update

any information, and modifies the input file. The program then computes
the gross pay for each employee and writes the information on a second
file.

The user lists his input file.TYPE FRF-P
48.99 g.oo .00

77 2.50 40..00
88 3.75 40..00
55 5.50 40..00
f6 3.35 40..00
44 8.10 48..00

TYPE PAYPOL:P He then lists his program file.

DIMENSION EMP< 100)*RATE(100>*HRS(100)*FAY< 100)
0PEN(3* 'PRF'^EANDIO^SYMBOLIO

7 FORMAT (IS)
EEAD(3# 1 * 8* END=33) < EMP(I) * RATE < I) #HRS < I) * I = 1 * 20

)

33 N=I-1
35 TYPE 2

2 FORMAT (• ENTER ANY UPDATES'/)
ACCEPT 8*EMPN0#RT*HR
IFCEMPNO.EG.OGO TO 85
DO 80 1=1*100
IRFC=I
IF<EMPNO.EO.EMP<I))GO TO 30

80 CONTINUE
25 CL0SE(3)

0PEN(4, 'GPF'^OUTPUT, SYMBOLIC)
DO 800 I»1*N
J=F.MP<I)
PAY< J)=HRS< I)*RATE< I

)

WRITE(4,5«EPB=210)EMP<I)#PAY<J)
800 CONTINUE
5 F0RMAT(I3*2X*F7.2)
210 CL0SE(4)

STOP
30 P0SITI0N<3*1+CIEEC-1)*17)

RATE(IREC)=ET
HfiS(IREC)=HE
WEITEC3*8)EKFN0#RT»HR
GO TO 35

8 F0RMAT(I3*2F6.8)
END

-EXECUTE PAYROL^ The user executes his program.

F-IVI PAYROL
MAIN.

LOADING
EXECUTION

13

ENTER ANY UFDATFS He enters the changes to the information on the input file.

77 8»5C 4 8»7^

ENTER ANY UPDATES
55 6«00 ^0» p

EXIT

The user lists the updated input file, then the output file.typ:E PBFp
99 2.00 48.00
77 S.50 48.00
88 3.75 40.00
55 5.50 40.00
66 3.35 40.00
44 g.lO 48.00

TYPE GPF-^
99 96.00
77 120.00
88 150.00
55 220.00
66 134.00
44 100.80

M FORMAT SPECIFICATION

The M format specification permits the reading and writing of integer

variables with embedded commas and a specified number of decimal places.

The M format specification works only with FORTRAN integers. If the

user enters a number with an M formiat specification, FORTRAN converts

the digits to an integer value. If the user requests output with an M format

specification, FORTRAN causes a decimal point to be printed in the posi-

tion the user specifies and a comma to be printed between every three

digits to the left of the decimal point.

The general form of the M format specification is

M w.d

where w is the total width of the field, and d is the number of digits to

appear to the right of the decimal point.

Because the M format conversions work only with integer variables,

the magnitude of the numbers may not exceed the maximum value of

FORTRAN integers, 34,359,738,367.

14

Output

When the M format specification is used for output, if the w is not

specified, or is equal to 0, a field width of 15 is assumed; if the d is not

specified, or is equal to 0, no decimal point is printed. The last position

in the field is reserved for a sign. If the value printed is negative, a minus
sign is printed in this position. If the value printed is positive, the last

position is blank. Sufficient space must be allocated in the specification

or the number will be truncated from the left. For example.

10

1=123456
TYPE 10*1
FORMAT (1X*M4)

results in the output of only four columns as follows:

456b

where b represents a blank in the position reserved for a sign.

The following are examples of integers printed using an M format
specification:

Format Integer

12345

Output

MIO bbbl2,345b

MIO.O 12345 bbbl2, 345b

MID.

2

12345 bbbl23.45b

MIO. 2 -12345 bbbl23.45-

Input

Any number entered with the M format specification is automatically

converted to a FORTRAN integer. Provided the specified field length is

adequate, the integer stored consists of all the digits to the left of the

decimal point plus the specified number of digits to the right of the decimal
point. The number entered may include commas and blanks; both are

counted as part of the field width, but do not affect the value of the number.
For example, if the format specification

FORMAT (M8. 2)

15

is used for input, the first eight characters, including commas and blanks,

are read. When more than two digits appear to the right of the decimal
point, extra digits are ignored, that is, truncated. If fewer than two digits

appear to the right of the decimal point, or are not read because the field

width is too small, a zero is read for each missing digit. A sign may
appear in either the first or last position in the field; the field width, 8,

includes the sign position.

The following are examples of input using M format with a specified

field width:

Format Input

M8.2 12,345,678.90

MS. 2 -12345678.90

MB. 2 1234567.89

MB. 2 123456.789

MB. 2 -123456.789

MB. 2 12, 345.67-

MB. 2 123456.78-

Stored Integer

12345600

-123456700

123456700

12345670

-12345600

-1234560

12345670

Either w or d may be zero in the specification. If d is zero, no

decimal places are read. If the field width, w, is zero, the input may have

any number of digits and a sign. The value limit of a FORTRAN integer

must not be exceeded. A series of numbers entered according to an M
format specification of field width zero must be separated by any non-digit

character other than blank, comma, decimal point, plus sign, or minus
sign. For example, the following numbers are entered with an M format

of field width zero:

Format Input

MO. 2 1,234, 56 7.89

MO.O 12345. 6789 3

MO. 5 12345.678912

Stored Integer

-123456789

12345

1234567891

16

OUTPUT ERRORS

Occasionally, an output value contains more digits than the specified

format allows. In this case, the entire format field is filled with asterisks

For example, if the value of K is 7594 and the program contains the

statements

TYPE 1000,K
1000 FORMATC THE NUMBER IS', 13)

the resulting output is:

THE NUMBER IS ***

17

SECTION 3

PROGRAM SEGMENTATION

Segmentation provides maximum flexibility in program construction
to minimize core storage requirements . By segmenting a program and
defining which segments reside in core at successive times during pro-
gram execution, it is possible to use all or part of core repeatedly during

different portions or stages of the program. Data may be saved during all

or part of execution in blank or labeled COMMON declared and allocated

according to the rules for segmentation. This capability results in direct

cost savings and permits FORTRAN IV programs of almost unlimited size.

PROGRAM COMPONENTS

Each program segment consists of a main program and/or subpro-
grams written on a single file. Each segment is created separately and
may be compiled separately. For example, the user writes four files:

Ml, SI, S2, and S3. Ml contains the main program MAIN. , subroutines

SUBRl, SUBR2, and SUBR3, and the function FUNCTl. SI contains five

subroutines; S2 contains three subroutines and four functions; and S3 con-

tains four subroutines.

Segments grouped together such that they are in core simultaneously

and can be replaced only as a unit form a program section. The section

which contains the main program is called the main program section. For
example, the segments Ml, SI, S2, and S3 may comprise three sections

as follows:

Section 1 Section 2 Section 3

Ml SI and S2 S3

Segments SI and S2 grouped in this way comprise one section, since they

must be in core simultaneously and must be replaced as a unit. Because
segment Ml contains the main program. Section 1 is the main program
section.

Program sections are associated in levels defined by their starting

location in storage. A program section and the section which replaces it

at the same starting location in core are of the same level. For example,

the user creates the files Ml, SI, S2, and S3 and groups them in three

sections such that Section 1 must be in core throughout execution, but when
Section 2 is in core with Section 1, Section 3 is not needed, and when
Section 3 is in core. Section 2 is not needed. The user may structure his

18

program such that Section 3 replaces Section 2 in core when needed.

Diagrammatically his program is:

Section 1

(Ml)

1

1 1

Section 2

(SI, S2)

Section 3

(S3)

In the first stage of the program the user needs Section 1 and Section 2 in

core. In stage 2, the user needs Section 1 and Section 3 in core. The
following illustrates core during successive stages of the program.

STAGE 1 STAGE 2

Section 1

(Ml)

Section 2

(SI, S2)

Section 1

(Ml)

Section 3

(S3)

Section 3 replaces Section 2; both sections have the same starting location

in core. Section 2 and Section 3 are of the same level.

The actual core used is the core required by the loaded sections. If

a smaller section replaces a larger section, only the core required for the

smaller section is used, ensuring minimum cost to the user. For example,
assume Section 1 requires lOK core. Section 2 requires 8K core, and
Section 3 requires 4K core. During stage 1 operations, the program uses
18K core, but when Section 3 replaces Section 2, the program uses only
14K core.

PROGRAM STRUCTURE

If the main program section of the program remains in core throughout
execution, and additional sections are replaced for successive operations,
the program is said to have an overlay structure. If the main program sec-
tion is replaced during execution, the program has a link structure. Each
main program section of a link structure may have an overlay structure
associated with it.

19

The number of segments in core at one time depends on the user's

definition of the program structure. The maximum number of sections is

256; the number of levels is otherwise unlimited.

The storage arrangement of the segments and the replacement scheme
are normally specified in the LOAD command. The files named in the LOAD
command may be either symbolic or relocatable binary.

The Overlay Structure

The user defines an overlay structure with the LOAD command, and

the system automatically stores the structure on an overlay file and saves

the file in the user's directory. Besides the overlay file, the LOAD com-
mand creates a core image which normally contains the main program
section of the overlay structure; the user may save this core image with

the SAVE command. The EXECUTE command or FDEBUG command may
be used in place of the LOAD command, but the core image can not be
saved.

Assume that segments of a program have been created separately

and stored on files Ml, SI, S2, S3, S4, S5, S6, S7, and S8, and that the

user wishes to execute the program in stages with the following segment
combinations

:

STAGE 1 Ml, SI, and S2

STAGE 2 Ml, SI, S3, S4, and S5

STAGE 3 Ml, SI, S3, and S6

STAGE 4 Ml, SI, S7, and S8

The program can be structured such that:

1. Ml and SI are loaded and remain in core during the entire

execution.

2. S2 is called into core when needed and used for stage 1 only.

3. S3, S4, and S5 replace S2 for stage 2 operations.

4. S6 replaces S4 and S5 for stage 3 operations.

5. S7 and S8 replace S3 and S6 for stage 4 and remain in core for

the remainder of 'execution.

20

Diagramed, the structure is:

Main Program Section

(Ml, SI)

1 1 1

Section P
(S2)

Section Q
(S3)

1
,

Section T
(S7, S8)

1

Section R
(S4, S5)

Section S

(S6)

The user creates this structure with the following LOAD command:

- LOAD Ml, SI, [S2!S3, [S4, S5!S6j !S7,S8] p

A comma separates files which are to be contiguous in core; an exclamation
mark separates files which are to overlay each other; brackets define the

boundaries of successive levels. Note that the two levels below the main
program section in the diagram correspond to the two sets of brackets in

the LOAD command. The innermost set of brackets defines the lowest
level of the program structure. The meaning of the comma and exclama-
tion mark can also be related to the diagram. The third level of the struc-
ture is defined by:

[S4,S5!S6]

The comma indicates that S4 and S5 are to be contiguous in core. The ex-
clamation mark indicates that S4 and S5 are to be replaced by S6. There
are two level 3 sections. One section contains segments S4 and S5; the

other section contains segment S6.

If a segment is to appear as all or part of more than one section, it

must be specified in each position. For example, if segment S7 is to reside
in core as part of Section P as well as part of Section T, the LOAD command
is:

- LOAD Ml, SI, [S2,S7!S3, [S4,S5!S6] !S7,S8] --,

This structure is permitted only if Ml and SI do not contain a FORTRAN
call to any subroutine in S7, because the subroutine name is a doubly-
defined symbol and the system does not know which segment to load.

Note that two separate copies of S7 are created when S7 is specified
twice. Thus, S7 in Section P is completely independent of S7 in Section T,
and any variable changes in S7 in one section do not affect the S7 variables
in the other section.

21

File access information is retained during the entire execution of an
overlay structure for access in every segment of the program. This re-
duces the time required for file input and output, and is accomplished with
a dynamic buffer allocation scheme which uses core only as required.

If the user's program consists of several segments, the LOAD com-
mand may be rather lengthy. The user may type the information on suc-
cessive lines by ending the line to be continued with a semicolon and a

Carriage Return.

The user may eliminate any need to retype the LOAD command by
writing a command string file containing the information for the LOAD
command. He uses this file by typing an @ and the file name following

the word LOAD. For example, the user creates a command string file in

EDITOR and uses that file in the LOAD command.

-EDITOR ^
APPE.MD-^
iiljSl>LS2.S3j^ p ^ Ijfjg ^Q ijg continued must be terminated by a semicolon
C.S4*S5! S63iS7>S83 p preceding the Carriage Return. The content of the command
* WRITE SPRQGl p

'

string file is identical to the information the user types in

i^EW F I LF, p the LOAD command when not using a command string file.

35 CHRS
• QUIT-,

-LOAD iSPROGl -p

Overlay Files

The program structure is saved on an overlay file created auto-
matically by the LOAD command. The LOAD command also creates a core
image which may be explicitly saved with the SAVE command.

Normally, the overlay file assumes the name of the first file specified

in the LOAD command and contains the file name extension . OVL. The
user may elect a different file name. He names the file by inserting

/NAME and a file name between the word LOAD and the structure definition

or by typing /NAME and a file name after the structure definition. Thus,
if the user wishes to name his file ABPROG. NEW, he types:

-LOAD /NAME ABPROG.NEW Ml, SI, [S2 !S3, [S4, S5 !S6] !S7, S8] -p

or

-LOAD M1,S1, [S2!S3, [S4,S5!S6] !S7,S8]/NAME ABPROG.NEW ^

As in the above examples, he may specify the file name extension; if no file

name extension is given, the file has the file name extension . OVL.

22

The user saves the core image on a file by typing

-SAVE file name p

where the file name may be any name the user chooses and may include a

file name extension. If no file name extension is specified, the core image
file has the file name extension . SAV. The user may change the name of

the core image file at any time, but the name of the overlay file is stored

on the core image file and must remain the same for the program to be run
without reloading.

The core image contains only the main program section unless the

user types a /INITIAL in the LOAD command anywhere within the last

section he wishes to have stored on the core image; each higher level con-

necting section is automatically saved. The section containing the /INITIAL
and each higher level connecting section must be the last sections named
for their respective overlay levels. For example, in the structure defined

by the command

- LOAD Ml, SI, [S2!S3, [S4, S5!S6] !S7,S8] -,

and depicted in the diagram on page 20, the only section which may be saved

with the main program section is Section T containing S7 and S8, since

Section T is the last section named in level 2. Because successively lower
levels are loaded contiguously in core and no lower level section is associated

with Section T, no lower level section can be saved in the core image.

To run a segmented program without reloading, both the overlay file

and the core image file must exist in the same user directory. The user
executes his program with the RUN command as follows:

-RUN file name -:^

The user does not need to specify the file name extension if it is . SAV,
because the RUN command assumes a core image file with the extension
.SAV. If the files are in another user's directory, the command is:

—RUN (user name)file name -,

The overlay file normally remains open throughout execution and
counts as one of the 15 files available for use in FORTRAN IV programs.
The user may type /CLOSE anywhere in the LOAD command containing the

structure definition and the system automatically opens the overlay file

when a new section is called into core, and recloses the file when the re-
quired sections are loaded. This open and close process is repeated as
often as necessary during program execution, freeing the file for tempo-
rary use.

23

The Link Structure

The main program section of a program may be replaced during

execution, and each main program section may have an overlay structure

associated with it. Only one main program may be in core at any one time.

The form of the LOAD command defining a link structure is merely
an extension of the form used to define an overlay structure. For example,

the user wishes to create a program with three links. The first link is the

main program section and overlay structure described on page 20. The
second and third links are illustrated below.

LINK 2 LINK 3

Main Program Section 2

(M2)

Section A
(Al, A2)

Main Program Section 3

(MS, Bl, B2)
I

~

Section B
(A3)

Section C
(B3)

Section D
(B4)

Section E
(B5, B6)

Section F
(B7)

The segments have been created separately and exist on separate files.

The LOAD command is:

- LOAD [M2,[A1, A21A3] ! M3, Bl, B2, [B3 !B4, [B5, B6 !B7]]

;

^
!M1,S1,[S2!S3,[S4, S5!S6]!S7,S8]]

^

One chain file is created and named M2.0VL because M2 is the first seg-

ment named in the LOAD command. The user may specify the file name
with the /NAME file name convention discussed for overlay files. A core

image exists for the main program section of the last link defined, that is,

the section containing Ml and SI. This core image must be explicitly saved

for execution with the RUN command as follows:

-SAVE file name ^-^

-RUN file name-,

The order of the link specifications in the LOAD command is un-

important except that a core image exists only for the last link defined.

Because execution starts from the main program section on the core image
file, the first link to be executed must be specified last in the LOAD command.

24

The /INITIAL and /CLOSE capabilities discussed for overlay files

also apply to link structure definitions. In addition, the command string

file may be used in the LOAD command defining a link structure. ^

CALLING SEQUENCE

Functionally, links are merely an extension of overlays. The primary
difference is the manner in which sections are called into core. Within an
overlay structure, the loading order of sections is controlled by FORTRAN
CALL statements to subprograms. Successive links are called into core
by a CALL CHAIN statement in the current link.

NOTE: Each time a section is read, the previous contents of that core
area are destroyed.

Overlay Calls

Normally, the core image file named in the RUN command contains
only the main program section, and only this section is initially loaded.

The order in which other sections are loaded is determined by the order in

which FORTRAN CALL statements are encountered in the program. A
legal FORTRAN CALL statement to a subprogram causes the section con-
taining that subprogram to be loaded. This is true for all normal FORTRAN
subroutine and function calls except those in which the subprogram being
called is passed to the caller as an argument.

A diagram of the overlay structure defined on page 19 is shown below.

Main Program Section

(Ml, SI)

1 1

Section P
(S2)

Section Q
(S3)

Section T
(S7, S8)

1

1 1

Section R
(S4, S5)

Section S

(S6)

The segments comprising each section are given in parentheses.

1 - See page 21 for a discussion of /NAME, /INITIAL, and /CLOSE.

2 - See page 21 for a description of the command string file.

25

If the section containing the called subprogram is one level below
the main program section, only that section is loaded. If the section called

is farther down in the structure, the connecting sections at each higher
level are also loaded; that is, using the above diagram, if a subprogram in

Section S is called. Section Q is also loaded. If a section is not in core,

its subprograms can be called only from a higher level and the calling sec-
tion must be the main program section or a loaded connector section be-
tween the main program section and the called section. In the example
above, if Section R is not in core, it may be called from the main program
section or from Section Q, provided Section Q is already in core. These
are the only possible ways Section R may be called into core. Further,
Section P and Section T may not call any other section to be loaded. Any
legal call to a section subprogram causes the entire section to be loaded.

For example, with the above program structure, a call to any subprogram
in S7 or S8 causes all of Section T to be loaded.

Any subprogram call is permitted if the section containing the sub-
program called and the section containing the call are both in core when the

CALL statement is encountered. For example, if Section Q and Section S

are in core with the main program section. Section S may contain a FOR-
TRAN CALL to a subprogram in Section Q.

NOTE: Any subprogram call which requires replacement of the calling

subprogram is not permitted.

FORTRAN statements may call a section any number of times, but

each time it is called, the section's position in core is governed by the

original structure definition.

Link Calls

At the end of execution of a link, the next link is called into core with

the FORTRAN statement

CALL CHAINCfile name')

where the file name corresponds to the file name of the first segment speci-

fied in the link. The file name conventions discussed on page 58 of this

document apply, except that no file name extension may be specified in the

CALL CHAIN statement. For example,

CALL CHAIN('M3')

causes the link whose first segment is M3 to be loaded in core.

26

RESIDENT SEGMENTS

One or more segments may be resident in core throughout execution

even though the program has a link structure, causing the main program
section to be replaced. For example, the user wishes to retain the sub-

program segments SO, AO, and BO in a resident section while three main
program sections and their overlay structures are executed. In diagram
form, the structure is shown below.

j:

Main Program
Section 1

(Ml, SI)

Overlay
Structure

Resident Section

(SO, AO, BO)

Main Program
Section 2

(M2)

Overlay
Structure

Main Program
Section 3

(M3, Bl, B2)

Overlay
Structure

The LOAD command form is:

- LOAD SO, AO, BO, [M2, [overlay structure] !M3,B1,B2, [overlay structure]

;

^^

! Ml , S 1 , [overlay structure]] -,

A resident section may be shared by some of the links, replacing or
being replaced by successive links as in the following example structure:

Resident Section

(SO, AO, BO)
Main Program Section 3

(M3, Bl, B2)

Main Program Section 1

(Ml, SI)

Overlay Structure Overlay Structure

The main program sections in this example are of different levels

and have different starting locations in core. Main Program Section 1

and Main Program Section 2 are still of the same level and share the
Resident Section. The LOAD command to create this structure is:

-LOAD [M3,B1 ,B2, [overlay structure] ISO ,A0 , BO , [M2 , [overlay structure]; p
! Ml ,S1 , [overlay structure]]] --,

27

Because of the order given in the LOAD command, the saved core image
file contains the Resident Section and Main Program Section 1. The saved
core image file always contains a main program section and any higher-

level sections. Additional sections may be saved by using /INITIAL. ^

The CALL CHAIN statement may appear in any section, regardless
of the number of sections sharing a given higher-level section. This is

true even if the main program sections are of different levels.

NOTE: If the program has an overlay structure, that is, only one main
program, the resident section is also the main program section.

DATA RETENTION

COMMON storage is allocated the first time it is declared. It may
be declared in any section, but the section in which COMMON is first de-

clared must be a section which can call all segments sharing the data in

COMMON. For example, assume the same program structure shown in

the diagram on page 24

.

Case 1 Section R and Section S are to share data in COMMON.
Only Section Q and the Main Program Section can call

both Section R and Section S. The COMMON must, there-

fore, be declared in Section Q or the Main Program
Section.

Case 2 COMMON is to be shared by Section P and Section S.

Section S can be called from Section Q or the Main
Program Section, but Section P can be called from the

Main Program Section only. The shared COMMON must
be declared in the Main Program Section.

Data to be used in more than one link must appear in blank or labeled

COMMON declared in a resident section which does not contain a main
program. The resident section must be in core with each link sharing the

data in COMMON. For example, in the first program structure diagram
in the above section, page 26, the blank or labeled COMMON declared in

the resident section is retained for use throughout execution. In the second

program structure diagram in the above section, page 26, the COMMON
data declared in the resident section is retained for use in the links as-

sociated with Main Program Section 1 and 2 only. No data is retained for

use in the link associated with Main Program Section 3. Because the link

associated with Main Program Section 3 shares no data and no subprograms
with the rest of the structure, it might just as easily be executed as a

separate program.

1 - For a discussion of /INITIAL, see page 22

28

LIBRARY LOADING

The loader performs a library search immediately following the

loading of each individual segment and loads any library program called in

that segment. Since the loader checks only for undefined symbols, a user
subprogram with the same name as a library routine which is referred to

prior to its loading causes the library routine of the same narae to be loaded,

and all future references to that name result in a multiply-defined symbol
error.

SAMPLE PROBLEM

This sample problem demonstrates program segmentation by printing

messages in the main program and each subprogram. The user creates
his program in segments and saves the segments on separate files; he
designs his program with the following structure.

B(BETA, CHI)

Main Program Section

FLOWMP(MAIN.)

A(ALPHA, OMEGA)

R(RHO)
L(LAMBDA)

V (GAMMA, ZETA, MU)

1
T(TAU, PSI)

D (DELTA)

K(KAPPA)
G(SIGMA)

The user loads his program, saves the core image on the file FLOW,
and begins execution of the program with the RUN command. The messages
from the main program and each subprogram are separated by two blank
lines.

29

"LP ftp FLOVMP»A> CB!RjL>CV!K>G] lT»D3p TTie user specifies the program structure,

F-IV: FLOWMP and the system automatically creates the

MA I IM , overlay file and names it FLOWMP.OVL.

F-IV: A
ALPHA
OMEGA

F-IV: F3

B£T/i The files named in the LOAD command

Q^j may be either symbolic or relocatable

F-IV* R binary. The files named here are symbolic

p„_
*

and each file is compiled separately.

F-IV: L
LAMBDA
F-IV: V
GAMMA
ZETA
MU

F-IV: K
KAPPA
F-IV: G

SIGMA
F-IV: T
TAU
PS I

F-IV: D
DELTA
LOADING
7K CORE

-SAVE FLOW p The user saves the core image on the file FLOW.SA V. The

JOB SAVED file name extension is automatically assigned by the system.

-RUN FLO VJ
-)

The user initiates program execution from the core image

file. The .SA Vfile name extension is implied.

THIS IS THE MAIN PROGRAM.
ALPHA AND OMEGA ARE ALSO IN THE MAIN PROGRAM SECTION.
THE FIRST SUBROUTINE CALLED IS ALPHA.

CONTROL IS NOW IN ALPHA.
ALPHA CONTAINS A CALL TO OMEGA.
ANY NUMBER OF CALCULATIONS MAY BE PERFORMED IN THE MAIN PROGRAM SECTION
BEFORE ANY OTHER SECTION IS LOADED.

CONTROL IS IN OMEGA WHICH WAS CALLED FROM ALPHA.
OMEGA CALLS BETA CAUSING THE LEVEL 2 SECTION CONTAINING BETA AND CHI TO
BE LOADED.

CONTROL HAS BEEN TRANSFERRED TO BETA AND BETA CALLS CHI.

30

CHI CONTINUES OPERATIONS FOR THAT LEVEL 8 SECTION AND RETURNS CONTROL
TO BETA.

BETA RETURNS CONTROL TO OMEGA.

OMEGA RETURNS CONTROL TO ALPHA.

ALPHA CALLS GAMMA.

CONTROL IS IN GAMMA* A THIRD LEVEL SECTION CALLED FROM THE MAIN PROGRAM
SECTION.
THE LEVEL 2 SECTION CONNECTING THE MAIN PROGRAM SECTION AND THE CALLED
THIRD LEVEL SECTION IS ALSO LOADED.

GAMMA CALLS ZETA.

ZETA RETURNS CONTROL TO GAMMA.

GAMMA CALLS MU.

MU RETURNS CONTROL TO GAMMA.

GAMMA RETURNS CONTROL TO ALPHA.

ALPHA RETURNS CONTROL TO THE MAIN PROGRAM.

RHO* LAMBDA^* ZETA* GAMMA* AND MU ARE CURRENTLY IN CORE.
THE MAIN PROGRAM CALLS RHO.

RHO CALLS LAMBDA.

CONTROL IS IN LAMBDA WHICH CALLS SIGMA. THE LEVEL 3 SECTION CONTAINING
KAPPA AND SIGMA IS LOADED.

CONTROL IS IN SIGMA AND KAPPA IS CALLED.

31

KAPPA HETUP.MS COOTROL TO SIGMA.

SIGMA RETURNS CONTROL TO LAMBDA.

LAMBDA RETURNS CONTROL TO RHO.

EHO RETURNS COOTROL TO THE MAIN PROGRAM.

THE MAIN PROGRAM CALLS DELTA AND THE LEVEL 2 SECTION CONTAINING TAU*
PS I, AND DELTA IS LOADED.

DELTA CALLS PS I

PS I CALLS TAU.

TAU RETUhNS COOTROL TO PS I

.

PS I RETURNS COMTROL TO DELTA.

DELTA RETURNS CONTROL TO THE MAIN PROGRAM.
EXIT

33

SECTION 4

CFORTRAN COMMANDS

CFORTRAN is a program development package which combines a

debugging and editing capability with the TYMCOM-X FORTRAN IV
language. The user may create, edit, run, and debug his program by
entering commands and statements directly in CFORTRAN. CFORTRAN
contains commands which are not part of the programming language, but

are special commajids allowing easy, efficient program manipulation.

This section describes these special CFORTRAN commands.

The user accesses CFORTRAN by typing

-CFORTRAN-)

at TYMEX command level. A greater than sign (>) prints on the terminal

to indicate that the user may enter CFORTRAN commands or statements

.

CFORTRAN requires fixed format program statements; that is, char-

acter positions 1 through 6 are reserved for statement numbers, comment
indicators, and line continuation characters. The actual FORTRAN state-

ment must be within character positions 7 through 72. Character position 1

immediately follows a CFORTRAN line number. 1 A user-typed Control I

moves the carriage to the appropriate position for entering a FORTRAN
statement. For example:

> 10 501^ CONTINUE ^

Each time the user enters a command specifying an output file,

CFORTRAN responds with the message NEW PILE or OLD FILE. A user-

typed Carriage Return or Line Feed confirms the command; any other

character aborts the command. If the user types a Carriage Return in

response to the OLD FILE message, CFORTRAN writes the new infor-

mation over the previous contents of the file.

Each command may be abbreviated to as few characters as required

to identify it uniquely. For example, the MOVE command may be abbrevi-

ated to MOV, but no further, to distinguish it from the MODIFY command.

SAMPLE PROBLEM

File name arguments may be established by an EDIT, SAVE,
COMPILE, or RUN command, then omitted in subsequent uses of these

commands. CFORTRAN, when reasonable, assumes the previously estab-

lished file name argument . The sample problem on the following page il-

lustrates the implied file name argument feature, the simple CFORTRAN
editing capabilities, and the direct entry of FORTRAN statements.

1 - CFORTRAN line numbers are discussed on page 36.

34

•CFORTRAN ^^

> FDIT THETA p
OK
>LIST

The user enters his program from the file THETA.F4.

CFORTRAN anticipates a .F4 file name extension.

D

5
10
18
19
20
30
39
40
50
59
60
64
65
66
70
80
100

REAL M1*MS
DIMENSION XC4)*YC4>
TYPE 5

5 FORMATC ENTER TWO POINTS FOR EACH OF TWO LINES'/)
DO 10 1=1*4

10 ACCFPT 20>XCI),Y(I)
C COMPUTE THE SLOPE OF EACH LINE

M1=(Y(1)-Y<8)>/(X(1)-X(8))
MS=(y(3)-Y<4))/CX(3)-X<4))

C COMPUTE THF ANGLE BETWEEN THE TWO LINES
THETA=ATAN< (Ml -M2)/(1 +M1*MS)

)

80 FORMAT <8F8. 3)
TYPE 30#M1*M2

30

31

FORMATC SLOPES = •*Fe.3*2X*' AND '*F8.3/)
TYPE 31*THETA
FORMATC ANGLE BETWEEN LINES = •>F10.6>' RAD.
END

>MOVE 6 6 TO 79 p The user modifies his program by moving statements from one position

>MOVE 64 TO 78 p to another, renumbering the lines, and changing a FORMAT statement.

> RF.NUMPER AS 10(10) -)

>MODIFY ?-l n
160 3J FORMATC ANGLE BETWEEN LINES = •*F10»6*' RAD«'//)
>SAVE ;3 He saves the modified program on THETA.F4.

The Carriage Return verifies the intent to write on THETA.F4.

THETA.F4
OLD FILE;:)

OK
>COMPILE p The user checks the compilation of his program. CFORTRAN
F - 1 V » THETA . F4 saves the compiled program on THETA.REL.
MAIN.

>RUN^
LOADING

DEBUG

!

*START^

The user executes his program. CFORTRAN assumes the same

file name argument originally established by the EDIT command.

FNTFR TWO POINTS FOR EACH OF TWO LINES
8» 5 3*4 ^ The user enters the X and Y coordinates for each point.

-'3» 5.2 p
P. -2.-^
4. 8iD

SLOPES = -0.327 AND 8.000

ANGLE BETWEEN LINES = -1.483435 RAD.

>QUIT-,

35

PROGRAM LISTINGS

With the LIST and FAST commands, the user may instruct CFORTRAN
to list all or part of his program on the terminal or to a file. The LIST
command lists all or part of a program with line numbers vertically

aligned, and has the general form:

>LIST [line address list] [TO file name] ^

The FAST command lists statements on the terminal exactly as

entered by the user, or on a file in a special format. The general form of

the FAST command is:

>FAST [line address list] [TO file name] -,

Line address lists are described on page 36 .

The commands

>LIST -,

and

>FAST-)

instruct CFORTRAN to list the entire program on the terminal.

To list all or part of a program on a file, the user includes the TO
file name option. The command

>LIST TO file name -^

lists the entire program on the file in the same format as:

> LIST ^

The command

>FAST TO file name ^

lists the entire program on the specified file in the same form, as the SAVE
command described on page 43. The file name is exactly as the user enters

it; no file name extension is automatically assigned.

The following example illustrates the listings produced by the LIST
and FAST commands:

>LIST ^

• 75 ACCEPT gO*A*B
2 20 FORMAT (2F8. 3)
3.001 C=SQRT(A**2+B**2)
4 TYPE 1,A*B*C

50.05 1 F0EMAT<3F8.3)
60 CALL ESUB
82.5 END

36

>FASTp
.75
9. 20
3.001
4

50.05 I

60
82.5
>

ACCEPT 20* A*

E

F0RMAT<2F8.3)
C»SQFT(A**2+B**2)

TYPE 1#A*B*C
FORMAT (3F8. 3)

CALL BSUB
END

LINE NUMBERS AND ADDRESSES

Each FORTRAN program statement must have a line number between
.001 and 99999.999; CFORTRAN commands must be entered without line

numbers . Line numbers are independent of statement labels; a FORTRAN
control statement refers to the statement label. For example, in the line

35 10 CONTINUE

35 is the line number, and 10 is the FORTRAN statement label. Thus,

DO 10 1=1,

N

is a legal reference to the above line, but

DO 35 1=1, N

is not

.

CFORTRAN permits various methods of line addressing to specify a

single line or range of lines. The address of a range of lines always takes

the form

where a-, is the address of the first line in the range, and a2 is the address
of the last line in the range. A line address list includes a series of line

addresses, separated by commas; embedded blanks are not permitted.

Line addresses may take any of the following forms:

Address Refers To

n Line number n

*n The n^" line in the program

• The last line operated on

$ The last line in the program

a+n The nth j^^^g after line a

a-n The n*'^ line before line a

37

Example

To illustrate the various methods of line addressing, assum,e that the

following CFORTRAN program is used:

>LIST;3

2 DATA A,F/P.7>7. 1/

5 ACCFPT 1*C
9 1 F0F.MAT(F8.3>

17 D=A*C+P
PI TYFE 1*D
P5 END

>FAST 9 p This comrrmnd addresses line number 9.

9 1 FORMAT (F8. 3

>

>FAST *4 p The *4 indicates the fourth line in the program.

17 D=A*C+B
>LIST 3t*5 p

9 1 FORMAT (FP. 3)
17 D=A*C+P
81 TYPF 1,D

> LIST » p The user wants to list the last line operated on.

PI TYPE 1,D

> FAST ? -, The $ refers to the last line in the program.

85 FND
>LIST 9t!B -^

9 1 F0RMAT<F8.3)
17 D=A*C+B
81 TYPE 1»D
85 END

>LIST 8-i-8;S-l -,

9 1 FORMAT <F8. 3)
17 D=A*C+B
81 TYPE 1#D

The command

>FAST .,2:21 TO FILE2 p

writes the current line and lines 2 through 21 on file FILE2

38

ENTERING STATEMENTS FROM THE TERMINAL

CFORTRAN permits the user to enter program statements from the

terminal with any one of three forms . The user may enter a single line

including the line number; he may specify a range of line numbers, then

enter the lines without numbers; or he may specify a starting line number
with a line number increment, and CFORTRAN prompts for each line by
printing the appropriate line number. In all cases, the word ENTER is

optional

.

To enter a single line from the terminal, the general form is:

> [ENTER] line number statement ^

If the line number specified in the command is the line number of a state-

ment in the program, the line typed replaces the original line. If the line

number specified is not in the program, the new line is inserted into the

program according to line number order. For example:

>L1ST^

1 DiMFwsro\' x<in),y<io)*z(iO)>VKiO)
2 DO 1 I = 1 * 1

3 Z(I)=X(I)+Y(I)
/I W(I) = (X<I)+Y(I))**2
5 5 CONTINUF
6 END

>^ VCI) = Z(I)**g --.

> 4.1 TYPE 2C>X(I)*Y(I)^7.CI),W(I) -^

> 4»P 90 F0HMAT(4Flg«^) p
> 5 10 CONTINUE -i

> LIST p

1 DIMENSION X(10)>YC 10)>Z(10)*W(10) New lines 4 and 5 replace the

P DO 10 1 = 1*10 old lines 4 and 5. Lines 4.1

3 Z (I) =X (I > +Y (I) and 4.2 are inserted in the

h VCT>=7. <I)**2 appropriate numerical order.

ii»\ TYPE ?0>X(I)*Y<I)*Z<1)*W(I)
i!'.P 90 FORMAT (4F 12. A)
5 10 CONTINUE
t END

A line or a range of lines may be entered without typing line numbers
by using the following form:

> [ENTER] line number :line number 3

39

CFORTRAN prompts with a @ at the beginning of each line, and the
user may type his lines without line numbers. To terminate the command,
the user types a Carriage Return immediately after the @ prompt.
CFORTRAN assigns line numbers to the lines typed, beginning with the
first number in the range and choosing as an increment the first of 1 , . 1 ,

.01 , and .001 that will allow the lines typed to fit in the specified range.
CFORTRAN deletes all statements with line numbers in the specified

range, then inserts the new lines. For example:

>LIST_,

1 DIWFNSION X<10)*Y(10)*Z< 10)#W<10>
2 DO 1 I = 1 * 1

3 Z<I)=XCI)+YCI)
4 V<I>=(X(I)+y<I))**2
5 CONTINUF
6 END

>ENTER ^:5 -,

P V.KI) = Z(I)**g p
g> TYPE gO>X(I?>YCI)^Z(I)^WCI) 7^

^20 F0KMAT(4F18.4) n
eijQ CONTINUE 7)

> LI-ST 7)

1 DIMENSION X(10)*Y(10)*ZC10)*W(10)
e DO 10 1=1*10
3 ZCI)=X(I)+Y(I)
4 W(I)=Z(I)**8
4.1 TYPE 20*X(I)*Y(I)*Z<I)>W<I)
«.8 20 F0KMAT(4F12.4)
4.3 10 CONTINUE
6 FND

To specify a starting line number, an increment, and, optionally, a

terminating line number, the command form is:

> [ENTER] line number (increment) [line number] -,

When the optional terminating line number is specified, CFORTRAN
first deletes all lines from the starting line number through the terminating

line number, then prompts for each line by printing the appropriate line

number. The command is terminated when the terminating line number is

reached or when the user types a Carriage Return following a line number

40

prompt. In the following example, CFORTRAN first deletes lines 10

through 100, then prompts for successive lines until the user types a

Carriage Return.

>ENTER 10< 5)100 -,

10 A=5. n
15 B=A»*8 ;^

20 X=SQF.T(A-«-B? -,

25 Y=SQRT(B-A) n
30 p
>

If the terminating line number is omitted, statements are accepted

until the user types a Carriage Return immediately after a line number
prompt. Thus, the above statements could also be entered as follows

without deleting lines 30 through 100.

>ENTER 10(5) :^

10 A=5.
15 p=A**g ^
SO X=SORT(A+B) n
85 Y=SQRT(P-A) n
30 ;)

When using this form, the user is protected against accidental

changing or intermixing of program lines. The user may enter the begin-

ning line number even if it currently exists, but if CFORTRAN computes

a line nunnber which would cause changing or intermixing of lines, CFOR-
TRAN automatically terminates the command instead of giving a line num-
ber prompt. For example:

> F\^TEP 10(5) 7^

10 A=37» n
>

CFORTRAN terminates the coramand, since the next computed line number
would force deletion of the existing line number 15 .

41

TRANSFERRING PROGRAMS AND STATEMENTS

CFORTRAN includes commands which permit the transfer of informa-
tion from a file to CFORTRAN, from CFORTRAN to a file, and from one

part of a CFORTRAN program to another. The EDIT command described
here, the MERGE command, and the COPY command transfer file informa-
tion to CFORTRAN; the SAVE, COPY, and MOVE commands transfer infor-

mation from CFORTRAN to a file. In addition, COPY and MOVE transfer

statements from one position to another within CFORTRAN.

Transferring Information From a File

To enter a program from a file, the user types the EDIT command,
including a valid file name. CFORTRAN prints OK, completely clears any
current program, and reads the program text from the appropriate file.

Each line in the file must have a line number , and the lines must be stored

in ascending line number order. The general command form is:

>EDIT file name -,

If the user enters a file name with a file name extension, CFORTRAN
searches for the named file. If no file name extension is specified,

CFORTRAN searches for a file with the specified name and the file name
extension F4 . If no such file exists, CFORTRAN then searches for a file

with the specified name and no extension. If no file exists with that speci-

fied name, an error diagnostic is printed. For example,

>EDIT PROG ^

causes a search of the user's directory for the file PROG.F4. If PROG.F4
does not exist, CFORTRAN then searches for PROG. If the search is still

unsuccessful, CFORTRAN prints an error message.

The MERGE command allows the user to insert corrections and

additions from a file into a program currently in CFORTRAN. MERGE
should not be used for initial program entry, since it is slower than EDIT.

The form for the MERGE command is:

>MERGE file name p

The file name specification and resulting searches are identical to those

described above for the EDIT command.

To enter information with the MERGE command, each line in the file

must have a line number. The lines may, however, be stored in any order.

If any line on the file has the same line number as a line in the current

program, CFORTRAN replaces the current line.

42

In the following example, the user lists the current program in CFOR-
TRAN, then uses the MERGE command to merge program corrections from
the file CORR.

>LIST n

1 ACCFPT X*Y
S Z=SQRT<X**P+Y**S)
3 THFTA=ATANg<X*Y)
4 END

The file CORR contains:

3.8 80 F0RMAT(8F10.6)
1 ACCEPT 20*X*y

The user uses the MERGE command, then lists the merged program as

follows

:

>MERGE CORR -^

OK
>LIST -,

1 ACCEPT 80*X#Y Line 1 from the file CORR replaces the old line 1

.

2 Z=SGET<X**8+Y**P)
3 THETAeATAN8<X»Y)
3.8 20 F0RMAT(8F10»6) Line 3.8 read from the file is inserted

A END in the proper position in the program.

In addition, the COPY command, described on page 44, permits the

user to enter unnumbered program statements from a file.

43

Transferring Information To a File

The SAVE command allows the user to store on a file the symbolic
text of his program. The relocatable binary program file is created and
saved by the COMPILE or RUN command, discussed on pages 52 and 54,
respectively. The COPY and MOVE commands, which are discussed
below, also permit the transfer of statements from CFORTRAN to a file.

The general form of the SAVE command is

>SAVE file name -,

where the file name may include a period (.) and a three-character file

name extension. If the user omits the file name extension, the last file

name extension specified or implied in a SAVE or EDIT command is

assigned. If no extension is specified, the implied extension is F4

.

The command

>SAVE ^

saves the current symbolic text on a file with the last name and extension

specified or implied in a previous SAVE or EDIT command. If no file

name was previously specified, CFORTRAN prints an error message.

SAVE writes the file with the line numbers right justified, leading

zeros inserted, and each line number followed by a tab character. The
line number field contains either five or ten characters, dependent on

the length required to accommodate the longest line number in the

program

.

Example

> FDTT ABFILF ^^ The user enters his program from ABFILE.F4.

OK
>MOVF 101 TO l^ p He modifies his program.

> RFNU!^PER AS 10(gO> -,

> SAVE^ The user saves the modified program.

APFILF.F4 CFORTRAN prints the implied file name.

LD F

I

LE ^ The user confirms the command to write on ABFILE.F4.

OK
>OUIT^

44

-TYPE APFILE»F4 ^ The user lists his program in TYMEX to see exactly how it is stored.

00010 TYPE 2

00030 2 FORMATC TYPE A, B* C*V)
00050 ACCEPT 1,A*B*C
00070 C0EFF=E**2-4.*A*C
00090 IF<C0EFF)10#20#20
00110 10 TYPE 5

00130 GO TO 50
00150 20 XP=(-P+SGRTCCOEFF))/(g*A>
00170 XN=(-E-£GRT(C0EFF))/<2*A)
00190 TYPE 12
OOPIO TYPE 15*XP,XN
00830 50 CONTINUE
00250 1 F0RMAT(3F9.4)
00870 5 FORMATC ALL ROOTS ARE IMAGINARY')
00P90 1? F0RMATC2X*' X+R00T'*4X' X-KOOT')
00310 15 FORMAT (/2F 10.4)
00330 END

The COPY and MOVE Commands

The COPY command allows the user to enter unnumbered lines from
a file, store lines on a file without line numbers, list lines on the terminal;
and copy lines from one part of a program to another . The MOVE command
permits him to move program lines to a file or a line range

.

The general form of the COPY command is:

>COPY source TO destination -p

The source rnay be a file name or a list of one or more line numbers or
range addresses separated by commas. File name specifications are
identical to those described on page 41 . The destination may be a file

name, T (or any other abbreviation of the word TERMINAL), or one of
the following:

line number :line number

line number (increment)line number

line number (increment)

45

CFORTRAN does not permit both source and destination to be file names;
that is

,

>COPY filename TO filename -,

is not a legal command. Also, if the source is a file, the terminal is not
a legal destination.

The form

>COPY source TO line number:line number -^

deletes the lines in the destination range and inserts a copy of the source
lines into the destination range . Line numbers begin with the first line

number specified and have as an increment the first of 1 , .1 , .01 , and
.001 which will fit the specified range. If the source is a file, no line in

the file may have a line number . For example , if the file AA contains the

lines

ACCEPT 50>X,Y
Z =APS(X-Y) Each line is preceded by eight blanks.

TYPE \00»7-

the user may copy AA to a line range in CFORTRAN as follows:

> C0PY fiA TO sntvn -^

OK
>FAST--)

50 ACCEPT 50*X*Y
51 7,=ABSCX-Y)
5? TYPE 100*7
>

The form

>COPY source TO line number(increment)line number -,

is the same as the previous form, except that the line number increment

is specified by the user. For example.

> COPY AA TO 50(10)70 p
OK
> EAST -,

50 ACCEPT 50»X,Y
fO 7 = AP.S(X-Y)
70 TYPE 100*7
>

46

inserts a copy of the source lines into the program, numbered from the

first line number specified with the specified increment.

When the terminating line number is not specified, the user is

protected from deleting or intermixing program lines . If a copied line

would be assigned a line number that would cause deletion or intermixing,

a message is printed and the command is ternninated. For example:

>COPY 3>*10>? TO 50(10) p
NOT FNOdGK ROOw, COnWAND NOT FXFCUTFD

The general form of the MOVE command is:

>MOVE line list TO destination ^

The destination can be a file name or one of the following:

line number: line number

line number(increment)line number

line number (increment)

When MOVE is executed, CFORTRAN deletes the source line list; otherwise,
MOVE works exactly like COPY. For example:

>LISTp

1

S
3
4 100
5

DO 100 I«1*N
D=8*C/I
C=C-D
CONTINUE
END

>MOVE 3
>LIST-,

TO .5-^

.5

1

8
4 100
5

C=C-D
DO 100 I=1*N
D=8*C/I
CONTINUE
FND

47

PROGRAM EDITING

When a program is in CFORTRAN, the user may modify, delete, and
renumber statements, using any of the EDITOR control characters and the
CFORTRAN commands described in this section. •'

Modifying Statements

The EDIT and MODIFY comm^ands specify a line or a group of lines

to be modified. The EDIT command prints each line, then permits the user
to edit it; the MODIFY command does not print the specified lines prior to

allowing the modification.

The EDIT command has the general form

>ED1T line address list -^

where the addresses may be any of the forms described on page 36.

If only one line is addressed in the EDIT command, the line is printed

on the terminal, providing a line image for editing purposes.

Example

>EDIT P ^
P S=A-B/g
9. S=(A+P+C)/P

If more than one line is addressed in the EDIT command, CFORTRAN
prints the lines addressed one at a time, waits for the user to edit that line,

and then continues to the next line. When the last line is edited, control

returns to CFORTRAN command level.

For a complete description of control characters, see the Tymshare
EDITOR Reference Manual.

48

Example

>EDIT 1,5:$ -,

1 ACCEPT 300, A,

B

1 Hf^ ACCEPT 300,A,B,Cp
5 200 FORMAT(3F10.2)
5 Z^ FORMAT(4D^F10.2)
6 300 FORMAT(3F10.4)
6 Z*^! 300 FORMAT(3F12D^.4)
7 STOP
7 If END -,

>

The MODIFY command has the form:

>MODIFY line address list -,

The MODIFY command is identical to the EDIT command , except that

the lines addressed are not printed on the terminal before allowing the

modification.

Deleting Statements

The user may delete any part of his program with the DELETE
command or all of his program with the CLEAR com.mand.

The DELETE command deletes any line or group of lines , and has
the general form

>DELETE line address list -:•)

where the list may contain one or more line or range addresses separated
by commas

.

Examples

>DELETE *12 -p

deletes the 12th line;

>DELETE . ,200:200+1 0,*400 -,

deletes the current line, line number 200 through the 10th line following
line number 200, and the 400th line in the program.

In the second example above, the address *400 refers to the 400th
line before execution of the DELETE command, not the 400th line after
the lines addressed by . and 200:100+10 are deleted.

49

The CLEAR command simply erases the entire program. It has the
general form:

>CLEAR-)

CFORTRAN replies:

ALL?

This question may be answered by typing Y (for Yes) or N (for No), followed
by a Carriage Return. If Y is typed, CFORTRAN erases the program; if N
is typed, the command is aborted. For example,

>CLEAR ^
ALL? Y-p

erases the entire program.

Renumbering Statements

The user may change all or part of the line numbers in his program
with the RENUMBER command. The general form is

>RENUMBER [source line range] [AS new line range]-p

where everything within brackets is optional. If the user types only

>RENUMBER^

CFORTRAN renumbers the entire program, starting with line number 1 and

selecting the largest increment from 1, .1, .01, and .001 which permits all

lines to have legal line numbers. For example:

>LIST -p

2 DIMENSION X<

1

0)* Y(10)*Z< 10)*W< 10)

P.

7

DO 10 1=1*10
2.9 Z(n=Z(I)+Y(I)
3.3 VKn = (X(n+Y<I))**P
5 10 CONTINUE

1 1 END

> RENUMPFR ^
> LrST p

1 DIMENSION X<10)*Y(10)*Z<10)*WC10)
9 DO 1 I = 1 # 1

3 Z<I)«Z(I)+Y(I)
/I W<I) = (X(I)+Y<I))**8
5 10 CONTINUE
e END

50

When the user wishes to renumber part of the program and permit

CFORTRAN to select the line number increment, he types:

>RENUMBER source line range ^

The new line numbers start with the first line number in the source line

range specification. If possible, a line number increment is selected so

that no line in the program is deleted; otherwise, CFORTRAN prints an

error diagnostic. For example, using the original program on the

preceding page:

>RENUMBER g»3»3 p
>LISTp

8 DIMENSION X<10)*Y<10)*Z(10)#W<10)
8.1 DO 10 I=l>10
8.2 Z(I>=Za>+YCI)
8.3 W<I)=(X(I)+Y<I))**8
5 10 CONTINUE

11 END

When the user wants to renumber the entire program with specified

line numbers, he uses the form:

>RENUMBER AS new line range -^^

The new line range specification may be any of the following:

line number:line number

line number(increment)line number

line number (increment)

For example:

>RENUMPER_AS_80»30
-)

>LIST n

80 DIMENSION X(10)> Y< 10)* Z(10)*W< 10)
81 DO 10 I»l*10
88 Z(I)=ZCI)+Y(I)
S3 WCI)«(XCI)+Y(I))**2
8/1 10 CONTINUE
85 END

51

The same renumbering occurs if the user types:

>RENUMBER AS 20(1)30 -,

or

>RENUMBER AS 20(1) -,

RENUMBER does not delete or rearrange lines. If the specification
requires deletion or rearrangement of lines, the command is not executed,
and CFORTRAN prints an error diagnostic.

Examples

>RFNUMPER gQ;g/!) AS £0(2) .-)

CANNOT RENUMBER* CHECK LINE RANGE
>

>RENUMBER 20:24 AS 20<.5)^
>FAST^
20 DIMENSION X<10)*Y<10>*Z<10>*W<10)
20.5 DO 10 Id, 10
81 Z<I)=Z(I)+Y<I)
21.5 W<I)=(X(I)+Y(I))**8
22 10 CONTINUE
25
>

END

COMPILATION AND EXECUTION

The user may compile, execute, and debug his program within

CFORTRAN, and may include any of the switches available in TYMEX.-^
A file does not have to be read into CFORTRAN before compilation or

execution; the COMPILE and RUN commands automatically access the

files. For editing purposes, however, the file must be accessed with

the EDIT command discussed on page 41 .

The CFORTRAN COMPILE and RUN commands are identical to the

TYMEX COMPILE and FDEBUG commands, respectively.

1 - See the Tymshare TYMEX Reference Manual.

52

The COMPILE Command

The COMPILE command compiles a program, prints any error diag-

nostics, and writes a relocatable binary file. No compilation occurs when

a relocatable file newer than the source file already exists. The general

form is:

>COMPILE [file name, file name, . . .] r)

The COMPILE command accesses each file and creates a relocatable binary

file for each. Each relocatable file has the name of the symbolic file with

the file name extension .REL. For example,

>COMPILE AFILE,BFILE,CFILE ^

accesses and compiles the files, then saves the corresponding binary

programs on the files AFILE.REL, BFILE.REL, and CFILE.REL.

The most recent file name argument in a COMPILE or RUN command
is retained for subsequent COMPILE or RUN commands .

•'

>COMPILE -,

assumes the argument of the most recent COMPILE or RUN command, or
if no prior COMPILE or RUN command has established a file name argu-

ment , compiles the current text. An interim CLEAR or EDIT command
erases the file name argument.

The current text is indicated by a dollar sign ($) entered as a file

name. For example,

>COMPILE $ -,

compiles only the current text . The command

>COMPILE ABC,DEQ,$,FILEX ^

compiles the current text and the files ABC, DEQ, and FILEX

.

Example

>COMPILF QUADR>AFILE -,

F-IV: QUADR.F4
MAIN.

F-IV: AFILF.F4
ASUB

1 - The RUN command is described on page 54.

53

>EDIT QUADR
OK
>EDIT 9^-^

The EDIT command erases the file name
specification of the COMPILE command.

94 15
94 \S
>COKPILE -,

F-IV: 008XXS.TMP
MAIiM.

F0RMAT</2F10.4)
F0R^!AT(/gF8.3) n

This COMPILE command instructs CFORTRAN
to compile the current text.

If the symbolics being compiled are currently saved on a file, the
relocatable binary program is saved on a file with the same name and the

file name extension .REL.

Exam.ple

>10
>15 10
>20
>3C
>35
>A0 SO
>45

ACCEPT 10#A,B,C
F0PMAT(3F8.3) -^

P=SQRT(A**B/8*C) 7)

ANS=EXP(D) ^
TYPE 90/ANS -,

F0RMAT(Flg»4) n
END

> SAVE FXPD ^
NEW FILE-)
OK
> C0MPILE -,

F-IV:
WAIN.

EXPD.F4

The symbolics are saved on the file EXPD.F4.

The compiled program is saved on the file EXPD.REL.

If the symbolics being compiled are not currently saved on a file,

the symbolic program and the relocatable program are assigned temporary
storage. A subsequent SAVE command saves the current symbolics and,

if it exists, the corresponding relocatable binary program.

54

Ehcample

-CFORTRAN -,

> EDIT DEXP t^

OK
>LISTp

10 ACCEPT 10*A*E*C
15 10 FORMAT <3F8. 3)
80 D=SQRT<A**B/2*C)
30 ANS=EXP(D)
35 TYPE SO*ANS
4 80 FORMAT (Fl 8. /»)

/1

5

END

> MOVF 15 TO 37 -)

>COMPILEp
F-IV: ooexxs.TMP
MAIN.

> SAVE DEXP -) The symbolics are saved on the file DEXP.F4, and the corresponding

LD F I LE
;5

relocatable binary program is saved on the file DEXP.REL.

OK
>

The RUN Command

The RUN command compiles and loads the specified program and
transfers control to DEBUG. The user then controls execution using
DEBUG. 1 He may return to CFORTRAN command level by typing EDIT
and a Carriage Return in DEBUG. If the user's program successfully
runs to completion, control automatically transfers from DEBUG to the
CFORTRAN command level.

The general form of the RUN command is:

>RUN [file name, file name, . . .] ^

RUN compiles the files, if necessary, and creates one relocatable file

for each symbolic file named . It then loads the files as one program and
starts DEBUG. The compile function of the RUN command is identical to

the COMPILE command function; file name arguments are established in

the same manner. RUN, like COMPILE, does not access a file for editing

purposes

.

1 - See the Tymshare DEBUG Reference Manual

.

55

Example

-CFORTRAM -^

> PUW APC^AFILF^SUEl -.

F - IV : AEC • F^! A relocatable binary file is created for each source file;

MA I N . that is, ABC.REL, AFILE.REL, and SUBl.REL are

F - 1 V 5 AF I LF • F^) created. The files specified constitute one program.

ASUF
F-IV: SUP1.F4
PSUP

LOADING

DFBUG

!

*

To initiate execution in DEBUG, the user types START followed by a

Carriage Return.

Setting Switches

CFORTRAN permits the user to set any of the switches available

with the TYMEX EXECUTE command.^ Switches may be preset to apply

to every file named in all COMPILE and RUN commands . In addition,

switches may be included in the command to apply to one, part, or all of

the files in the file name list

.

To preset switches, the user types:

>SWITCH /switch name /switch name ... -:)

The switches apply to every file in all COMPILE and RUN commands unless

a contradictory switch is set, a new SWITCH command is entered, or all

switches are nullified . The command

>SWITCHp

cancels all switches previously set with a SWITCH command.

Within a COMPILE or RUN command, switches may be specified in

three ways: preceding the entire file name list, immediately following a

file name, or embedded in the file name list. The user may use any com-

bination of the specification. If a /switch precedes the entire file name
list , that is ,

>RUN /switch file name, file name, file name, . • ^

1 - See the Tymshare TYMEX Reference Manual.

56

the switch is set for each file named . A switch immediately following a

file name applies only to that file. For example,

>COMPILE ABC,DEQ/CREF,FILEX ^

sets the CREF switch for file DEQ only. A switch specification which
appears within the file name list and is set off with commas or spaces

applies to the files whose names follow the switch name. For example,

>COMPILE AFILE , ABC , / LIBRARY , DEQ , FILEX ^

sets the LIBRARY switch for files DEQ and FILEX.

NOTE: When two contradictory switches are set, the last switch specified

is used.

The file name argument assumed by a subsequent COMPILE or RUN
command does not include the switches which precede the file name list; a

switch specified in either of the other two ways is included. For example:

>COMPILE /N QUADR,AFILE/LIBRARY,/I,FILEX,B -^

>RUN-)

The file name argument used for the RUN command includes the /LIBRARY
switch and the /I, but not the preceding /N switch. The user may, there-
fore, include preceding switches in the RUN command without changing the
implied file name argument. For example, if the user types

>COMPILE /N QUADR, AFILE/ LIBRARY,/ 1, FILEX,

B

-,

>RUN /LIST -p

CFORTRAN interprets the RUN command as:

>RUN /LIST QUADR, AFILE/ LIBRARY, /I, FILEX, B ^

57

SECTION 5

FORTRAN IV LIBRARY

The FORTRAN IV library described in the Tymshare TYMCOM-X
FORTRAN IV Reference Manual has been modified and expanded. The new-

functions and subroutines used for a specific purpose, such as file handling,
are included in the description of the appropriate capability. All other new
or modified subprogranas are described in this section.

In addition to the FORTRAN IV library, the user may access any rou-
tine in the Scientific Subroutine Package. •' When naming his program file(s)

in a COMPILE, LOAD, EXECUTE, DEBUG, or TRY command, the user
includes (UPL)SSP/LIB in the file name list. For example:

-EXECUTE PROG,(UPL)SSP/LIB p

The FORTRAN IV library subroutines discussed in this section are

listed in the following table .

Name Description

AFILE Opens file for input across user boundaries.

BENCHM Prints CPU and elapsed time.

BFILE Opens file for input or output across user boundaries.

DCLOSE Closes a previously opened direct access file.

DDEL Deletes a specified record from a direct access file.

DEFINB Opens a fixed length record direct access file.

DGROW Increases the number of records on a direct access file.

DOPENB Opens a direct access file.

DREAD Reads the requested information from a direct access file.

DSKERR Prints the interpretation of a direct access file error code.

DWRITE Writes the requested information to a direct access file.

DYNARY Dynamically allocates array storage.

EXIT Completes output and terminates execution.

IFILE Opens a sequential file for input.

NAMPPN Converts a user name to a file directory number.

OFILE Opens a sequential file for output

.

1 - For a complete list of the routines in the Scientific Subroutine Package,

see the Appendix.

58

Name Description

ONECHR Prints a right-justified ASCII character on the terminal.

PLOT Plots values on CalComp plotter.

PLOTF Initializes program for off-line plotting with CalComp plotter.

PLOTS Initializes com.mon variables and initiates a CalComp plotter

.

RENAME Renames or deletes specified files

.

RUN Transfers control to another core image program.

SCALE Determines scaling factor for CalComp plotting.

SYMBOL Draws one character or a string of characters on a CalComp
plotter

.

TIMER Specifies maximum CPU time for program execution.

WHERE Returns the pen location and factor for the CalComp plotter.

ARGUMENTS

The subroutine calling arguments are described with the respective
subroutines; however, many of the subroutines have common arguments.
These arguments are described below.

file number An integer constant or variable corresponding to the number
of the file being accessed. Valid file numbers are 1 through
29. A maximum of 15 files may be open simultaneously.

'file name' A string constant or variable representing the name of the
file being opened . This argument may be the actual file

name enclosed in single quote marks, a double precision
variable name , or an array name . The file name is one
to ten characters in length and may include as many as six

characters plus a period (.) and a three-character file

name extension. If the file name is assigned to an array
and fewer than ten characters are specified, the first

array element with fewer than five characters terminates
the file name. For a file name exactly five characters in

length, the next array element must be set to zero or blank.
For example, if the array NAME has been dimensioned for
at least two elements, each of the following specifies a file

name

.

NAME(1)='FILEA'
NAME(2)='B'

59

NAME(1)='FILEA'
NAME(2)=' '

NAME(1)='FILEA'
NAME(2)=0

NAME(1)='FILEA'
NAME(2)='B.EXT'

Regardless of the way the file name is specified, the file

name read includes only the characters preceding the first

blank. For example,

DOUBLE PRECISION NAME
NAME='FILE A . NEW
is read as:

NAME='FILE'

user name A variable name or constant indicating the user name asso-
ciated with the file being opened. If the argument has the

integer value 0, the program assumes the current user
name. If the user name is an array variable, it may con-
tain as many as 12 characters, and the first unused array
element must be set equal to zero, or three array elements
must be specified. For example, each of the following sets

of statements specifies a.user name.

DIMENSION UNAME(3)
UNAME(l)='JOHND'
UNAME(2)='OECOR'
UNAME(3)='P'

DIMENSION UNAME(3)
UNAME(l)='JOHND'
UNAME(2)='OE'
UNAME(3) =

DIMENSION UNAME(3)
UNAME(l)='JOHND'
UNAME(2)='OE'
UNAME(3)=' '

NOTE: This user name description is valid only for those

subroutines which permit a double precision user
name.

60

MODIFIED SUBROUTINES

Some of the subroutines discussed in the Tymshare TYMCOM-X
FORTRAN IV Reference Manual have been changed. In the DEFINE, FILE,
IFILE, and OFILE subroutines, the file name argument has been changed to

accommodate file names of the form, described on page 58. The EXIT sub-

routine now completes any unfinished output procedure and releases all files

before terminating program execution. The function of the CHAIN subrou-

tine has been replaced with the program segmentation capability described

on page 17

.

MULTIPLE ENTRY POINT PROGRAM TRANSFERS

FORTRAN programs may call the RUN subroutine to access other

FORTRAN programs or Tymshare Library programs. In addition, a called

FORTRAN program may contain a statement which defines multiple entry

points; the desired entry point is specified as an argument in the CALL
RUN statement.

The RUN subroutine is called by a statement of the form

CALL RUNCdevice name', 'file name', user name, entry number)

where the arguments are as defined below.

'device name' The name of the device on which the program is stored;

this argument may be 'DSK' , 'SYS', or a variable contain-

ing the device name. 'DSK' accesses any user program;
'SYS' accesses a Tymshare Library program.

'file name' The name of the program file. This argument may be the

actual file name enclosed in single quote marks or the

name of the variable containing the file name . The file

named must be a core image file; the system assumes
the extension .SAV or .SHR.

user name
(optional)

The user name as described on page 59 . If the CALL
RUN statement accesses a Tymshare Library program,
the user name must be equal to zero.

entry number
(optional)

An integer constant or variable defining the entry point

in the program being called. An entry number equal to n
corresponds to the n*^ statement label in the /ENTRY
statement described below. If this argument is omitted
or is equal to zero, execution of the called program
begins with the first statement in the program.

61

NOTE: If an entry number is specified, a user name,
which may be zero, must also be specified.

If the user wishes to begin execution of a called program at selected
points within the program, he may include a /ENTRY statement as the first

statement in the main program of the called program. The form of this
statement is

/ENTRY a,b,c, . . .

where a,b,c, . . . are statement labels corresponding to statement labels in

the called main program . Statement a is entry point 1 , statement b is

entry point 2, etc. For example, assume that the calling program contains
the statement

CALL RUN('DSK','PROG2',0,3)

and that the called program, PROG2, contains the statement

/ENTRY 7,15,24,9,6

as the first statement of the main program. When FORTRAN encounters
the CALL RUN statement, core is cleared, PROG2 is loaded, and the pro-
gram execution begins with the statement labeled 24 in PROG2 , which is

entry point 3 .

NOTE: The entry point argument in the CALL RUN statement must be
less than or equal to the number of statement labels in the /ENTRY
statement. The user's program should check for this possible

problem, as it is not automatically checked by the system.

Example

-TYPE SQUARE p

10

11

13

20
30

THIS IS THE CALLING PROGRAM')

IS'*/)

TYPE 10
FORMATC
TYPE 1 1

FORMAT (' INPUT I 1»

ACCEPT 13* II* Iff

F0RMAT<2I3)
DO 80 1=11*12
J=l**2
TYPE 30* I*

J

FORMAT (215)
IENT=1
IF(J.LE.400)IENT=2
1F(J.GT.800)IENT=0
IF(J.LE.250)IENT=3
CALL
END

The entry point selected depends upon the computed value

of J.

This statement transfers control
^^---'''^ to program SQUAD in the current

RUN C ' DSK • * ' S CUAD * 0* I ENT)
^^^^,^ directory and begins execution

at entry point IENT.

62

-TYPE SQUAD
Z>

If the entry point is 0, execution starts at the beginning of the

/ ENTRY 3 0*4 0*60 program; if the entry point is 1, execution begins at statement

REAL LENGTH ^0; if the entry point is 2, execution begins at statement 40;

TYPE 7 andif the entry point is 3, execution begins at statement 60.

7 FORMATC THIS IS THE CALLED PROGRAM* SQUAD')
30 TYPE 9.

8 F0RMAT(13H TYPE A* B* C*/)
ACCEPT 1*A*B*C

1 F0FKATC3F9.4>
IFCCOFFF) 10*20*80

10 TYPF 5

5 F0RMAT(' ALL ROOTS ABE IMAGINARY')
GO TO 50

9.0 XP0SRT = <-B +SQRT<C0EFF))/(2.*A)
XNEGRT=C-B-SGRTCCOEFF))/Ce.*A)
TYPE IP

12 F0RMAT(8X*7H X+R00T*4X*7H X-ROOT)
TYPE 15*XP0SRT*XMEGRT

15 FORMAT (/2F 10.4)
40 TYPE 3

TYPE 16

3 FORMATC THIS IS ENTRY POINT TWO IN SQUAD')
16 FORMATC INPUT XI* Yl *X2* Y2 ' */

)

ACCEPT 4*X1*Y1*X2*Y2
4 F0RMAr(4F9.4)

LENGTH=SQRT((XI -X2)**2+((Yl -Y2)**2))

SL0PE=(Y1-Y2)/(X1-X2)
TYPE 25*LENGTH* SLOPE

25 FORMAT (' LENGTH= •*F8.3*' SLOPE= •*F8.3)
60 TYPF 61
61 FORMATC THIS IS ENTRY POINT THREE IN SQUAD')

TYPE 67
67 FORMAT(' INPUT TIME* P*Q'*/)

ACCEPT 62*TIME*P*Q
62 F0RMAT(3F8.2)

DO 65 N=l*5
R=(P*G+N)/TIME

65 TYPE 66*N*R
66 F0RMAT(I2*F9.3)
50 CONTINUE

END

-LOAD SQUAD ^ The user loads the program to create a core image file.

LOADING
5K CORE

-SAVE SQUAD ;^ He saves the core image file. The system names file file SQUAD.SA V.

JOB SAVED

63

-EXECUTE SQUARE p
LOADING
EXECUTION

THIS IS THE CALLING
I NPUT I 1 * 18

PROGRAM

14 196
15 225
16 256
17 289
18 324
19 361

THIS IS ENTRY POINT TWO IN SQUAD
INPUT Xl*yi*X2*Ye
14.5 23.4 19.2 44.1

SLOPESLENGTHS 21.227 4.404
THIS IS ENTRY POINT THREE IN SQUAD
INPUT TIME* P*Q
22.3 247.8 432.2-^

1 4802.698
2 4802.743
3 4802.787
4 4802.832
5 4802.877
EXIT

THE BENCHM SUBROUTINE

The BENCHM subroutine causes FORTRAN to print the CPU time

and elapsed time for the program execution to that point. BENCHM is

called without arguments; for example:

CALL BENCHM

THE AFILE SUBROUTINE

The AFILE subroutine allows the reading of files from other users'

directories. The form of the CALL statement is

CALL AFILE(file number, 'file name', 'user name')

where the argument specifications are as described on page 58 .

64

THE BFILE SUBROUTINE

The BFILE subroutine allows files to be accessed from other users'

directories for input or output . The statement is

CALL BFILE(file number, 'file name', 'user name', access mode)

where the access mode is the word INPUT or OUTPUT in single quote
marks, or a variable name containing the word INPUT or OUTPUT. The
other arguments are described on page 58 .

THE DYNARY SUBROUTINE

DYNARY is a dynamic array storage allocation subroutine. The
user may vary the array sizes to accommodate the desired compilations.
For example, a program which normally computes and has allocated for

25 array values may be called by DYNARY and the array expanded to 2000
elements . The call to DYNARY is

CALL DYNARY(IERR,SUBR,Si,S2, . . . ,s^, ,pari ,par2, . . . ,parjj^)

where the arguments are defined as follows

.

lERR An integer variable returned as:

1 . The number of words of core available if used as the only

argument or if there is insufficient core to allocate arrays

of the specified size.

2. -1 if a RETURN is encountered in the called subprogram;
a RETURN releases the dynamically allocated arrays . The
called subprogram need not contain a RETURN statement

.

SUBR The subprogram which uses the arrays to be allocated. The
- CALL DYNARY executes the equivalent of the call to the sub-

program; that is,

CALL SUBRXarrayj ,array2, . . . , arrayj^, par ^ ,par2, . . • .par^^)

where arrays ,array2,arrayj-^ are the dynamically allocated

arrays, and parj ,par2, . . . ,parj_j^ are the other arguments for

SUBR, SUBR must be declared in an EXTERNAL statement.

65

Sj ,S2, . . . ,s^,0 The variable names whose values are the sizes, in

words , of the arrays arrayi , arrayo , . . . , arrayn
used by the subprogram SUBR . The zero (0) argu-
ment terminates the list of array sizes

.

par
J
,par2,par^ The arguments for SUBR other than the dynamically

allocated arrays. These arguments are passed,
unchanged, to SUBR.

NOTE: All dynamically allocated arrays are deleted when any segment of

the program is replaced by an overlay.

If a file is opened after the dynamic allocation of arrays , it must be
closed before a RETURN, as the input/output buffers are deleted with the

dynamically allocated arrays.

Dynamically allocated arrays cannot be declared in a COMMON
statement

.

THE NAMPPN SUBROUTINE

The NAMPPN subroutine converts a user name to a file directory

number. This number has the form of two integers separated by a zero.

The NAMPPN subroutine is called with the statement

CALL NAMPPNCuser name' , variable name, error)

where the user name specification is as described on page 59, the variable

name is the variable to which the file directory number is assigned, and

the error codes are as listed in the table below.

Error Code Meaning

Successful operation

1 No channels available

2 Bad user name argument

3 Not a valid user name on this system

11 System error

66

THE ONECHR SUBROUTINE

The user may instruct FORTRAN to print on the terminal the ASCII

character equivalent of the right -most eight bits of a variable value with

no system conversion.! Thus, the user may access any ASCII character.

The user calls this subroutine with the statement

CALL ONECHR (x)

where x is a variable name. For example,

1=35

CALL ONECHR (I)

causes the system to print an equal sign (=), because 35 is the external

decimal equivalent of the ASCII character = .

THE RENAME SUBROUTINE

The RENAME subroutine permits the user to change the name and/or

protection code on an existing file and to delete files . The form is

CALL RENAMECon' , 'oe' , 'nn' , 'ne' ,np, error)

where on is the old file name .

oe is the old extension.

nn is the new file name

.

ne is the new extension.

np is the protection code of the new file. ^

error is an error code returned by the subroutine

.

NOTE: The argument for the error code must be a variable name, not a

constant

.

To delete a file, the arguments nn, ne, and np are specified as zero.

For example,

CALL RENAME('TEST','IMP',0,0,0,IERR)

deletes the file named TEST. IMP.

1 - See page 133 ofHhe Tymshare TYMCOM-X FORTRAN IV Reference
Manual for a table of ASCII characters

.

2 - For a description of file protection codes, see the Tymshare TYMEX
Reference Manual.

67

The error codes are listed below. If a nonzero error code is returned,
it indicates that no renaming or protection changes were made.

Code Description

Successful completion of subroutine

1 User file directory not found

2 Protection failure

3 File in use by another job

4 New file name already in use

5 No file selected on rename channel

6 Old file not found

7 Disk error

A maximum of five characters is allowed in the file names; a maximum
of three nonblank characters is allowed in the extensions . If an extension is

blank, a zero argument or a string of at least three blanks should be used.
If no protection change is required, a zero argument should be used. The
protection code must be specified as an octal number, such as 057, 055,

or 077.

THE TIMER SUBROUTINE

The TIMER subroutine permits the user to specify the maximum
number of CPU seconds his program can run. If the program runs longer

than the specified time, a message is printed, execution is terminated,
and control is returned to TYMEX command level.

TIMER is called by the statement

CALL TIMER(n)

where n is an integer equal to the maximum CPU time in seconds.

DIRECT ACCESS FILE SUBROUTINES

The TYMCOM-X FORTRAN IV library contains seven direct access

file (DAF) subroutines: DOPENB, DREAD, DWRITE, DDEL, DCLOSE,
DGROW, and DSKERR . The DAF subroutines have been superseded by the

Tymshare file handling capability described on page 3, but are retained in

the FORTRAN library for compatibility. DAF processing is valid only on

68

files that have been created by the DAF subroutines; however, it is possible

to read data from a sequential file and to store it on a direct access file.

Binary files created with the DAF subroutines are compatible with the

Tymshare file handling capability.

Arguments

With the exception of DOPENB, which requires additional arguments,
the user calls each DAF subroutine with one or more of the parameters
below as arguments. Note that missing arguments or arguments out of

sequence cause an error.

N The file number, as described on page 58.

E An integer variable name whose value is set by the DAF subroutines

to indicate success or failure of operation. It is important for the

user to check error codes after DAF calls to ensure proper operation

of the program. The variable E is assigned a value of 1 if the opera-
tion is successful; any other value indicates a failure. See page 71

for a complete list of codes and their meanings

.

R The associated variable which has an integer value indicating the

number of the record to be accessed. Note that this argument must
be an integer variable. DOPENB automatically assigns a value of 1

to this variable after a successful operation in DOPENB; and after

each subsequent operation by DWRITE, DREAD, or DDEL, the

subroutine automatically increments this parameter by 1

.

A An array name specifying the array to be used in a data transfer.

The array dimensions must be large enough to accommodate at least

one record.

The DOPENB Subroutine

The user must open each file with the DOPENB subroutine before any
direct access file activity can occur. DOPENB may be used to create a file

or open an existing file. The user calls DOPENB with the statement

CALL DOPENB(N, E , R , F , USER , MODE , RMAX , L)

where N, E, and R are defined above, and the other arguments are defined

as follows

.

F The file name argument as described on page 58.

USER The user name argument as described on page 59.

69

MODE An integer from to 3 , inclusive, indicating the activity intended.
The different values indicate the following:

File initialization. After the file has been initialized, MODE
is set to 2 internally. Mode is valid only if no file with the
specified name, F, exists.

1 Read only; file used for input.

2 Write only; file used for output.

3 Read, write, and update; file used for input, output, or
updating.

To change MODE, the user must close the file with the DOLOSE
subroutine and use DOPENB to reopen it with the new MODE
desired.

RMAX An integer variable name or constant whose value represents the

maximum number of records on the file. This value cannot be
changed in subsequent DOPENB statements. Records not written
actually exist as undefined records. A constant argument is used
only for file initialization. Any reference to an existing file must
have a variable name argument; DOPENB assigns the correspond-
ing value for the specified file.

L An integer variable name or constant whose value represents the

actual record length in five- character storage words. All records
must be of fixed length. A constant argument is used only for file

initialization. Any reference to an existing file must have a var-
iable name argument; DOPENB assigns the corresponding value

for the specified file.

The following example statement opens a new file:

CALL DOPENB (1 , IE , R , 'FILE . NEW , , , NREC , LNTH)

When the program encounters this statement, the file, FILE. NEW, is

opened as file number 1 and initialized under the current user name. The
file contains NREC records of length LNTH. The mode is changed to 2 , R
is automatically set to 1 to indicate the first record, and IE is set to 1 to

indicate a successful operation. Within this FORTRAN program, all activ-

ity on file number 1 refers to this file until file number 1 is closed with the

DOLOSE subroutine.

DOPENB may also be used to open an existing file in the following

manner:

DOUBLE PRECISION NAME
NAME = 'AFILE'
CALL DOPEN(6 , IE , IR , NAME , ABCl 23 ,1,10,4)

70

These instructions cause a search of user ABC123's file directory for the

existing file, AFILE. If the file is found and a read operation is permitted,

IE is set to 1 to indicate success, and IR is initialized to 1 . The file AFILE
is open as file number 6 and contains ten records, four words long. If the

file is not found or its use is prohibited, IE is set to indicate an error, and

control is returned to the user's program.

The DREAD Subroutine

The DREAD subroutine reads the requested record into the array

indicated. The user calls DREAD with the statement:

CALL DREAD(N,E,R,A)

DREAD locates record R on file number N and copies the data for that

record into the array A. The variable E is automatically set to the appro-

priate value. If the read is successful, E is set to 1, and the record num-
ber is incremented by 1 . The MODE of file number N must be set in the

DOPENB subroutine to permit a read operation.

The DWRITE Subroutine

The DWRITE subroutine transfers data from the named array to the

specified record of the file number indicated. The CALL statement has

the form:

CALL DWRITE(N,E,R,A)

The data in array A is written on record R of file number N, E is set to the

proper value, and R is incremented by 1

.

The DDEL Subroutine

The DDEL subroutine permits the user to delete a specified record.
The record is marked as undefined and is inaccessible to all DAF subrou-
tines . The form of the CALL statement is:

CALL DDEL(N,E,R,A)

DDEL locates record R in file number N, reads the contents of that record
into array A, and marks the record as undefined. For example:

DIMENSION ALPHA (4)

IR=4
CALL DDEL (7, IE, IR, ALPHA)

Record 4 on file number 7 is marked as undefined; ALPHA contains the

previous contents of record 4

.

71

NOTE: The user may write over the contents of a record without deleting

the record.

The DCLOSE Subroutine

The function of the DCLOSE routine is to close a particular file. All

open files must be closed before program termination. Files open when
EXIT is called remain open, resulting in attempts being made to open files

that are already open when the program is rerun. Except for DOPENB, no

DAF subroutine can be used with a closed file. The CALL statement to

access DCLOSE is:

CALL DCLOSE(N,E)

The file currently open as file number N is closed and a new file number N
may be opened, or the previously open file may be reopened as any unused
file number

.

The DGROW Subroutine

The DGROW subroutine enables the user to change the size of an

existing DAF file by changing the maximum number of records . The CALL
statement is

CALL DGROW(N,E,RMAX,A)

where N, E, and A are as described on page 68, and RMAX is the maximum
number of records in the file.

The DSKERR Subroutine

The DSKERR subroutine interprets error indicators. The CALL
statement is:

CALL DSKERR(E)

The error message corresponding to the value of E is printed on the ter-

minal. The error messages are listed in the table below.

Error Code Printed Message

-3, -2 Impossible disk handler error
(system error; call your Tymshare
representative)

1 (No message; successful operation)

72

Printed Message

Invalid data set reference number

Insufficient core for program

Mode incompatible with existing files

File not accessible

Requested file does not exist

Device output error

Device input error

Input/output requested on closed data set

End of file on requested data set

Unsuccessful open attempt

Attempt to initialize active file

Unsuccessful close attempt

Associated variable invalid

Attempt to read an undefined record

No available input /output channel

Attempt to open data set already open

Attempt to write a read-only data set

Attempt to read a write-only data set

Invalid logical record length

Invalid attempt to delete logical record

The following example is a program using six DAF subroutines

.

-TYPE DAFFX ^

INTEGER F*F.»RMAX*N(8) N is the transfer array.

DOUBLE PRECISION NAME
TYPE 10

10 FORMAT (• ENTEK FILE NAME! '»$)
ACCEPT 1S»NAME

IS FORMAT(AIO)
CALL DOPENBC 1 *E»R* NAME* 0* 0* 5*8) The user creates a file on data set 1

.

IF<E.EQ.1)G0 TO 1 1 The file will have a maximum of

IF(E»E0»12>G0 TO 50 fi'^^ records, each two words long.

TYPE 101#E

Error Code

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

73

101
11

IN FILE INITIALIZATION')

50

60

lOS

so

70

104

103
40
6

30

FORMAT (• ERROR *,12>
DO 1 1=5*25*5
N(l) = I

NC2)=-I
CALL dv;rite<i*f*r*n)

DSKERRCE)
DOLOSE <1>E)
DSKERRCE)
DOPENE (1 * E* R > NAME* 0* 3* RMAX* L

)

DSKERRCE)
8*RMAX*L

FORMAT <• # OF REC0RDS='*I8*/' #0F WORDS PER REC0RD='*ie)
DO 20 I = l*RNIAy
CALL DRFAD(1*E*R»N)
IFCE.NF. 1)G0 TO 60
IP=R-1
TYPE 4,IP,(N(J)* J=1*L)

CALL
CALL
CALL
CALL
CALL
TYPE

The user closes the file on data set 1

so that he may reopen it with MODE
set to read, write, or delete.

RECORD #'*I1*FORMAT (

•

GO TO 20
CALL DSKERRCE)
IB=P-l
TYPE 102 * IB
FORMATC RECORD #«*I2//)
IFCE.F0.15)G0 TO 80
CALL DCL0SFC1*E)
CALL DSKERRCE)
CALL EXIT
CONTINUE
R=2
CALL DDELC1*E*R,N)
IFCE.EQ.l)G0 TO 70
CALL DSKERRCE)
IB=R-1
TYPE 104, IB
FORMATC RECORD #'*I2*'
TYPE 103
FORMATC//' ASK FOR SELECTED
TYPE e

FORMATC//'
ACCEPT 7*R
FORMAT C I I)

IFCR.FQ.OGO TO 30
CALL DREAD C1,E*R*N)
CALL DSKERRCE)
IFCFVNF*!)G0 TO 40
IB=R-1
TYPE 4*IB*CNCJ)#J=1*L)
GO TO 4

•*4I4)

R is automatically incremented by 1;

to print the number of the record

just read, the user must subtract 1.

DELETED'

)

records;enter zero to stop.')

WHICH RECORD?? '$)

CALL DCL0SEC1,E)
CALL DSKERRCE)
CALL EXIT
END

The user should close each DAFfile before calling EXIT.

74

-EXECUTE DAFEX r,

F-IV: DAFEX
MAIN.

LOADING
EXECUTION

ENTER FILE NAME! DAFILEp

OF RECORDS^ 5
#0F WORDS PER RECORD= 8

RECORD #1 5-5
RECORD #S 10-10
RECORD #3 15-15
RECORD #4 20 -20
RECORD #5 25 -25
RECORD # 2 DELETED

ASK FOR SELECTED RECORDS; ENTER ZERO TO STOP.

WHICH RECORD? A_^

RECORD #4 20 -20

WHICH RECORD? 2^

ATTEMPTING TO READ AN UNDEFINED RECORD

WHICH RECORD? 3.^

RECORD #3 15 rl5

WHICH RECORD? 0.^

EXIT

CALCOMP PLOTTER SUBROUTINES

The CalComp plotting package consists of eight subroutines . The
PLOTS subroutine initializes the plotter and must be the first plotting

subroutine called.

The sign conventions for the CalComp plotter subroutines are designed
for standard report-type graphs, with the vertical dimension designated as
the Y axis and the horizontal dimension as the X aixis . Standard graphs are
usually presented on 8-1/2" by 11" or 11" by 17" sheets. The positive Y

75

axis is directed to the left across the plotter drum, parallel to the pen
carriage. The positive X axis is directed back into the plotter toward the
paper supply roll

.

The AXIS Subroutine

The AXIS subroutine sets up one axis, including scales and labels.

The calling sequence is

CALL AX1S(X , Y , LABEL , LCNT , LENGTH, ANGLE ,X0 , DX)

where X and Y are the coordinates of the axis origin.

LABEL is the array containing the axis label.

LCNT is a constant or variable equal to the number of characters
in the label

.

LENGTH is the axis length in inches

.

ANGLE is the orientation of the axis in degrees measured counter-
clockwise from the horizontal

XO is the axis value at the origin.

DX is the difference in value between two adjacent points on
the axis

.

The LINE Subroutine

LINE draws a line graph of the X and Y coordinate data. LINE is

called with the statement

CALL LINE(X,Y,N,K)

where X and Y are the arrays, N is the number of points to be plotted, and

K indicates that every K*^ value is to be plotted.

The NUMBER Subroutine

NUMBER plots a floating point number in the manner specified in the

CALL statement. The calling sequence is

CALL NUMBER(X , Y , HEIGHT , FNUM , ANGLE , NDIGIT)

where X and Y are the coordinates of the plot position.

FNUM is a floating point constant or variable whose value is the

height in inches of the character to be plotted.

76

ANGLE is the character orientation in degrees counterclockwise

from the horizontal

.

NDIGIT is the number of decimal places to be plotted. If NDIGIT
equals zero, the decimal point is plotted, and if NDIGIT
is less than zero, only the integer portion of the number
is plotted

.

T.he PLOT Subroutine

The PLOT subroutine moves the plotter pen to the specified position.

The calling sequence is

CALL PLOT(X,Y,IP)

where X and Y are the coordinates of the point to which the pen moves

.

IP indicates the pen position while in motion.

IP==2 Pen down; line drawn.

IP=3 Pen up; point drawn.

IP<0 Plots the data in the plot output buffer and resets
the origin to the current pen position. The user
must call PLOT with a negative IP before termin-
ating execution; otherwise, part of the plot will not

be transmitted.

The PLOTF Subroutine

PLOTF initializes the program for off-line plotting. Calling PLOTF
instead of PLOTS, described below, causes all the commands that would
have been sent to the plotter to be written on a file. The calling sequence
is

CALL PLOTF(LDEV)

where LDEV is the number of a file opened for symbolic output. All

plotting commands are written on this file.

The PLOTS Subroutine

The PLOTS subroutine initializes the plotter and must be the first

plotting subroutine called. The calling statement is

CALL PLOTS(IERR)

where lERR is an integer variable which the system sets to a value of

if the initialization is successful, and -1 if the plotter is unavailable.

77

The SCALE Subroutine

The SCALE subroutine computes the initial axis value and the scale
factor. The calling sequence is

CALL SCALE(X,N, LENGTH,XO,DX)

where X is the array represented by one axis .

N is the number of elements in the array X

.

LENGTH is the axis length in inches

.

XO is the variable name for the computed minimum value
of X.

DX is the variable name for the computed difference in value
between two adjacent points on the axis

.

The SYMBOL Subroutine

The SYMBOL subroutine permits the user to specify characters to

be drawn, the size of the characters, and the angle at which they are drawn.
The calling statement is

CALL SYMBOL(X , Y , HEIGHT , BCD , ANGLE, NBCD)

where X and Y are the coordinates, in inches from the plotter origin, of

the lower left corner of the symbol to be drawn.

HEIGHT is the height of the symbol in inches

.

BCD is an integer or real array containing the Hollerith

characters to be drawn.

ANGLE is the character orientation in degrees , measured
counterclockwise from the horizontal.

NBCD is the number of characters from BCD to be drawn.

The WHERE Subroutine

The WHERE subroutine returns the present plotter position. The
CALL statement is:

CALL WHERE(X,Y)

The position is returned as (X,Y).

79

SECTION 6

BINARY LIBRARY PROGRAM

CARMEL is the TYMCOM-X FORTRAN program for creating and
updating subprogram libraries

.

To expedite subprogram loading, CARMEL automatically creates a

subprogram directory for the entire library and stores it on the library

file.

CARMEL uses an ordered list of the subprograms which are to be
included in the library and a list of the file containing those subprograms,
then selects the subprograms from the appropriate files; it can also list

subprograms in an existing library, CARMEL uses only relocatable binary

files and assumes the files named have the extension . REL. If a file with

a blank extension is to be used, the user types the file name followed by a

period.

CREATING OR UPDATING A LIBRARY

CARMEL is called from TYMEX with the command:

-R CARMEL ^

The program prompts for the required input information. Each user
response is followed by a Carriage Return. When the user calls CARMEL,
the system responds:

OLD LIBRARY -<

If the user wishes to create a new library, he names any file containing

one or more of the subprograms to be included in the new library. If the

user wishes to update an existing library, he types the name of the file to

be modified. To use a file from another user's directory, the user types

the file name followed by the user's file directory number enclosed in

brackets, that is:-"-

file name [file directory number]

The next information requested by the system is:

NEW LIBRARY *

The user types the name of the file on which he wishes to store the new or

updated library. The new library file name may be the same as the old

library file name.

1 - The user may type PPN in TYMEX to determine his file directory num-

ber. This number has the form of two integers separated by a comma.

80

CARMEL is now ready for the ordered subprogram list; the prompt is

LIBRARY LIST *

after which the user types the name of a file which contains the list of all

subprograms to be included in the library. The subprograms must be

listed in the order they are to appear in the library. If the user types a

Carriage Return in response to this question, the order of the subprograms
is the same as in the old library. The file named contains a list of the

subprograms to be included. The subprogram names are separated by a

character other than a letter or a digit and the list must be terminated
with a #. Even though the file named is not a relocatable binary file, the

user must indicate a file name extension by typing a period and the actual

file name extension or merely a period to indicate a blank extension.

The next system prompt is:

NEW FILE NAME - EXTRA RETURN WHEN DONE

The user types the names of all the files which contain one or more sub-
programs to be added to the old library or to replace subprogram versions
on the old library. The user follows each file name with a Carriage Return.
When all the files have been named, the user types an extra Carriage Re-
turn. CARMEL searches each of the new files and the old library for the

subprograms named.

If no new files are required, the user may type a single Carriage
Return.

LISTING A LIBRARY

If the user wishes a listing of the subprograms on an existing library
file, he types the file name followed by the characters /L or /A in response
to the prompt:

OLD LIBRARY *

Instead of the usual prompt requesting the name of the new library, the
system prints

OUTPUT TO

and the user responds with a device name followed by a colon (:). Normally,
the user will request a listing on the termiinal with the response TTY:. If

the /L option is chosen, the system lists the names of the subprograms in
the old library on the device specified. If the /A option is chosen, the sys-
tem lists each subprogram name, the entry point of each subprogram, the
starting location word number, and the block number on the specified device.

EXAMPLE USING CARMEL

The user has three symbolic files, LIBl, PROD, and QUADR; he
wishes to create a single library of the routines written on these files.

-EDITOP p The user creates a file containing a list of the programs
*APPENDp he wants in the library in the order they are to appear.

SUM PRODCT DAFS TC03JD1#-^
WRITE LIST-,

NEW FILEp

25 CHRS
GUIT-^

He names the file LIST.

-COMPILE LIBl jPP.OD>DAF p
F-IV: LIBl

SUM
F-iy: PROD
PRODCT

F-iy: DAF
DAFS

The user must compile his symbolic files because CARMEL
works only with relocatable binary files. The COMPILE
command automatically creates and saves a relocatable

binary file with the extension .REL.

EXIT

-R CARMEL D

OLD LIBRARY *LIP1-

NEW LIBRARY *LIB2-

The file named here may be any of the files LIBl, PROD, or QUADR,
since the user is creating a new library rather than modifying an old one.

LIBRARY LIST *LIST. The file name is followed by a period to indicate a blank extension.

i>JEW FILE NAMES - EXTRA RETUR-\J WriEM DO.ME
PROD t)

DAFp

EXIT

-R CARMELd

CARMEL searches for the required subprograms on the files

PROD.REL, QUADR.REL, and the old library file LIBl.REL.

OLD LIBRARY *LIBSALp

OUTPUT TO TTft ^ The user requests the list to be printed on the terminal.

The colon must follow TTY.

SUC^

PRODCT
DAFS
TCONDl

KXIT

83

APPENDIX

SCIENTIFIC SUBROUTINE PACKAGE

STATISTICAL ROUTINES

ABSNT Tests missing or zero values for each observation in a matrix.

AUTO Calculates the autocovariances for lags 0,1,2, .. . ,(L-1), given
a time series of observations Aj ,A2, . . . ,Aj^ and a number L.

AVCAL Performs the calculus for the general k-factor experiment:
operator S and operator A

.

AVDAT Places data for analysis of variance in properly distributed

positions of storage (used in conjunction with AVCAL and
MEANQ).

BOUND Selects from a set of observations the number of observations
under, between, and over two given bounds for each variable.

CANOR Performs a canonical correlation analysis between two sets of

variables

.

CHISQ Calculates degrees of freedom and chi-square for a given con-

tingency table of observed frequencies .

CORRE Calculates means, standard deviations, sums of cross-products

of deviations from means , and product moment correlation

coefficients

.

CROSS Calculates the cross covariances of series B lagging and lead-

ing A , given two time series Aj , A2 , . . • , Aj^ and Bj , B2 , . . . , B^

,

and given a number L.

DISCR Performs a discriminant analysis.

DMATX Calculates means of variables in each group and a pooled dis-

persion matrix for the set of groups in a discriminant analysis.

EXSMO Calculates a smoothed series given a time series and a smooth-

ing constant

.

GAUSS Computes a normally distributed random number with a given

mean and standard deviation

.

84

GDATA

KRANK

LOAD

MEANQ

MOMEN

Generates independent variables up to the mth power (the

highest degree polynomial specified) and calculates means,

standard deviations, sums of cross-products of deviations

from means, and product moment correlation coefficients.

Computes the Kendall rank correlation coefficient

.

Calculates the coefficients of each factor by multiplying the

elements of each normalized eigenvector by the square root

of the corresponding eigenvalue.

Performs the mean square operation for the general k-factor

experiment

.

Computes four moments for grouped data on equal class

intervals

.

MULTR Performs a multiple regression analysis for a dependent

variable and a set of independent variables.

NROOT Finds eigenvalues and eigenvectors of a special nonsymmetric
matrix

.

ORDER Constructs from a larger matrix of correlation coefficients a

subset matrix of intercorrelations among independent variables

with the dependent variable

.

QTEST Determines the Cochran Q-test statistic.

RANDU Computes uniformly distributed random floating point numbers
between and 1 .0 and integers in the range to 2^^.

RANK Ranks a vector of values .

SMO Calculates the smoothed or filtered series, given a time series,

a selection integer, and a weighting series.

SRANK Measures the correlation between two variables by means of

the Spearman rank correlation coefficient

.

SUBMX Copies from a larger matrix of observations a subset matrix
of those observations which have satisfied certain conditions.

SUBST Derives a subset vector indicating which observations in a set

have satisfied certain conditions of the variable.

TABl Tabulates the frequencies and percent frequencies over class

intervals for a selected variable in an observation matrix.

85

TAB2 Performs a two-way classification of the frequency, percent
frequency, and other statistics over given class intervals, for
two selected variables in an observation matrix.

TALLY Calculates total, mean, standard deviation, minimum., and
maximum for each variable in a set of observations

.

TIE Calculates the correlation factor due to ties.

TRACE Finds the number of eigenvalues which are greater than or
equal to the value of a specified constant

.

TTSTT Computes certain t- statistics on the means of populations under
various hypotheses.

TWOAV Tests whether a number of samples are from the same popula-
tion, using the Friedman two-way analysis of variance test.

UTEST Tests whether two independent groups are from the same popu-
lation by means of the Mann-Whitney U-test

.

VARMX Performs orthogonal rotations on an m by k factor matrix in

such a way that

i:j.E(.^f;-[E(a^f)]f

is a maximum,

WTEST Computes the Kendall coefficient of concordance

.

MATRIX SUBROUTINES

ARRAY Converts a data array from single dimension to double dimen-
sion or vice versa.

CADD Adds a column of one matrix to a column of another matrix.

CCPY Copies a specified column of a matrix into a vector

.

CCUT Partitions a matrix between specified columns to form two
resultant matrices

.

CINT Interchanges two columns of a matrix.

86

CSRT Sorts the columns of a matrix.

CSUM Adds the elements of each column of a matrix to form a row

vector.

CTAB Tabulates the columns of a matrix to form a summary matrix.

CTIE Adjoins two matrices with rows of the same length to form one

resultant matrix

.

DCLA Sets each diagonal element of a matrix equal to a given scalar.

DCPY Copies diagonal elements of a matrix into a vector.

EIGEN Finds eigenvalues and eigenvectors of a real symmetric matrix.

GMADD Adds two general matrices to form a resultant general matrix.

GMPRD Multiplies two general matrices to form a resultant general

matrix.

GMSUB Subtracts one general matrix from another to form a resultant

matrix.

GMTRA Transposes a general matrix.

GTPRD Premultiplies a general matrix by the transposition of another

general matrix

.

LOG Computes a vector subscript for an element in a matrix of some
specified storage mode.

MADD Adds two matrices element by element to form a resultant matrix

.

MATA Premultiplies a matrix by its transposition to form a symmetric
matrix

.

MCPY Copies an entire matrix.

MFUN Applies a function to each element of a matrix to form a resultant

matrix

.

MINV Inverts a matrix.

MPRD Multiplies two matrices to form a resultant m.atrix.

MSTR Changes the storage mode of a matrix

.

87

MSUB Subtracts two matrices element by element to form a resultant

matrix

.

MTRA Transposes a matrix.

RADD Adds a row of one matrix to a row of another matrix.

RCPY Copies a specified row of a matrix into a vector.

RCUT Partitions a matrix between specified rows to form two resultant

matrices .

RECP Calculates the reciprocal of an element of a matrix.

RINT Interchanges two rows of a matrix.

RSRT Sorts the rows of a matrix.

RSUM Adds the elements of each row of a matrix to form a column
vector

.

RTAB Tabulates the rows of a matrix to form a summary matrix.

RTIE Adjoins two matrices with columns of the same length to form

one resultant matrix

.

SADD Adds a scalar to each element of a matrix to form a resultant

matrix

.

SCLA Sets each element of a matrix equal to a given scalar.

SCMA Multiplies a column of a matrix by a scalar and adds the result

to another column of the same matrix

.

SDIV Divides each element of a matrix by a scalar to form a resultant

matrix

.

SIMQ Solves a set of simultaneous linear equations .

SMPY Multiplies each element of a matrix by a scalar to form a

resultant matrix.

SRMA Multiplies a row of a matrix by a scalar and adds the result to

another row of the same matrix.

SSUB Subtracts a scalar from each element of a matrix to form a

resultant matrix.

TPRD

XCPY

Transposes a matrix, then multiplies it by another to form a

resultant matrix

.

Copies a part of a matrix

.

MATHEMATICAL SUBROUTINES

BESI Computes the I Bessel function for a given argument and order.

BESJ Computes the J Bessel function for a given argument and order.

BESK Computes the K Bessel function for a given argument and order,

BESY Computes the Y Bessel function for a given argument and order,

CELl Computes the complete elliptic integral of the first kind.

CEL2 Computes the generalized complete elliptic integral of the

second kind

.

CS Computes the Fresnel integrals for a given value of the

argument

.

EXPI Computes the exponential integral in the range from -4 to

infinity

.

FORIF Produces the Fourier coefficients for a given periodic function.

FORIT Produces the Fourier coefficients of a tabulated function.

GAMMA Computes the value of the gamma function for a given argument.

LEP Computes the values of the Legendre polynomials P(N,X) for
argument value X and orders to N.

PADD Adds two polynomials .

PADDM Adds coefficients of one polynomial to the product of a factor by
coefficients of another polynomial.

PCLA Replaces one polynomial with another.

PCLD Shifts the origin of a coefficient vector of a polynomial.

PDER Finds the derivative of a polynomial

.

89

PDIV Divides one polynomial by another.

PGCD Determines the greatest common division of two polynomials .

PILD Evaluates a polynomial and its first derivative for a given
argument

.

PINT Finds the integral of a polynomial with the constant of integra-
tion equal to zero

.

PMPY Multiplies two polynomials .

PNORM Normalizes the coefficient vector of a polynomial.

POLRT Computes the real and complex roots of a real polynomial.

PQSD Performs quadratic synthetic division.

PSUB Subtracts one polynomial from another.

PVAL Evaluates a polynomial for a given value of the variable.

PVSUB Substitutes the variable of one polynomial with another
polynomial

.

QATR Finds the integral of a tabulated function by quadrature.

QSF Integrates an equidistantly tabulated function using Simpson's
rule

.

RKGS Solves a system of first -order ordinary differential equations

given initial values, using the Runge-Kutta method.

RKl Integrates a given function using the Runge-Kutta technique

and produces the final computed value of the integral.

RK2 Integrates a given function using the Runge-Kutta technique

and produces tabulated values of the computed integral.

RTMI Determines a root of the general nonlinear equation f(X)=0,

. using Mueller's iteration scheme.

RTNI Refines the initial guess xq of a root of the general nonlinear

equation f(X)=0. Newton's iteration scheme is used.

RTWI Refines the initial guess xq of a root of the general nonlinear
equation x=f (X) . Wegstein's iteration scheme is used.

SICI Computes the sine and cosine integrals

